Internal Deliverable
Title: LDAP Client Architecture

DESIRE II: Project Deliverable [image: image7.png]

Project Number:
RE 4004 (RE)

Project Title:
DESIRE II - Development of a European Service for Information on Research and Education II

Deliverable Type:
LI

Deliverable Number:

Contractual Date of Delivery:

Actual Date of Delivery:

Title of Deliverable:

Workpackage(s) contributing to the Deliverable:
WP3

Nature of the Deliverable:

Author:
Damy Mahl

Contact Details:
Damy.Mahl@brunel.ac.uk
Computer Centre,
Brunel University,
Cleveland Road,
Uxbridge, Middlesex,
UB8 3PH
United Kingdom

+44 1895 203061

URL
http://www.desire.org/html/research/deliverables/D?_?/D?_?.html

Abstract
Outline of the internal architecture of the DESIRE II LDAP client.

Keywords
LDAP
DUA
Directory
Client
Index

Distribution List:

Issue:
1.0

Reference:
LDAP Client Architecture

Total Number of Pages:
11

Table of Contents

PART I
Title Page

1DESIRE II: Project Deliverable

Part II
4
Document Control
4
PART III
5
1
Introduction
5
2
Service Architecture
5
1.1
Infrastructure
5
1.2
Client/Server Interaction
5
3
Search Algorithm
6
1.3
The Requirement
6
1.4
Search Algorithm Overview
7
1.5
Handling Referrals
9
PART IV
11
4
Bibliography
11

Part II

Document Control

Issue Number
Issue Date
Reason for Change

1.0
4/2/98
Initial version.

PART III

1 Introduction

The DESIRE II project is developing a White Pages directory service based on an index of existing directory servers in Europe. The service model proposes the development of a set of national LDAP servers, each of which holds a copy of the entire index. Index entries contain a reference to an LDAP server holding a copy of the entire entry. The client used to access the service initially searches an index server, then follows returned references to obtain the target entry. In order to support this both the server and client are required to support the version 3 of the LDAP specification.

The client has to implement a number of specific techniques in order to enable useful access to the underlying index service. The most important of these is the ability to handle LDAPv3 referrals during the course of a search operation. Moreover, the client needs to handle multiple referrals in parallel, together with the management of multiple simultaneous server connections that this implies.

This document describes an LDAP client designed to support index based directories. The focus is on how the client interacts with the server in order to best fulfil the user requirement. Search strategies appropriate to the services envisaged in DESIRE II are the focal point. The design presented is, however, general enough to support a number of different types of directory service, index based or otherwise, as long as they provide LDAPv3 access. This will allow the client to support most present and future forms of directory service that have an LDAP interface.

A preceding document 'LDAP Client Requirements' describes the client requirements in a greater level of detail.

2 Service Architecture

1.1 Infrastructure

The service will consist of a number of national index servers. These servers are contacted directly by the client. A root server exists for the purposes of index accumulation and distribution to the national servers.

The index object contains a list of personal entries crawled from the LDAP servers of participating organisations. Each index entry contains enough information to formulate an LDAP search referral to a complete copy of the entry, i.e. host details and a search continuation (partial DN provided).

1.2 Client/Server Interaction

The client will contact a national index server when the local LDAP service cannot satisfy the query, i.e. when the user is performing a non-local lookup. Queries will consist of a search for a personal entry, most probably using the commonName attribute and will be performed using subtree scope. At this stage it is not possible to request any attributes from the entry as the LDAP search continuation result is not defined in a way that allows the return of entry attributes.

For every search made the index server will return a list of continuation references. Here is an example of the kind of referral that the DUA can expect given a search using the filter ‘cn=*joe*bloggs*’:

ldap://dir.widget.co.uk/o=Widget%2Cc=GB??sub?(cn=*joe*bloggs*)

In the case where few referrals are returned the client can go ahead and connect to the referred LDAP servers, continue the request and display any matching entries. If the number of returned referrals hits a configured limit then the list should be presented to the user so that he/she can decide which of these should be pursued. This avoids putting load on a large number of LDAP servers unduly.

[image: image1.wmf]Client

LDAP

Server 1

Index

Server

LDAP

Server 2

LDAP

Server n

1.

 Client Sends Search

to Index Server

2.

 Index Server Returns a

List of Referrals

3.

Client Pushes

Request to Referred

LDAP Servers

Figure 2.1. Client/Server Interaction

3 Search Algorithm

The client must contain baseline support for the DESIRE II directory service. The ability to support other search strategies is useful as this will allow the client to access many forms of LDAP based directory services. For the purposes of this document three different forms of personal search will be used as cases that the client should be able to cope with:

1. A search against a personal index. The search is submitted to an index server. The server then returns a list of referrals, each of which contain a server address and a search continuation referral (a base DN from which the search can be retried and an appropriate search filter).

2. A search utilising an organisational index to route searches to a target LDAP server. The client searches for a named organisation. Returned referrals are used as the basis of subsequent personal searches at the organisational level. This type of search requires two input values - an organisation name and a personal name.

3. A search using a traditional directory hierarchical database model. Here the directory information tree is traversed using a sequence of search operations, i.e. search below the root for the named country, search below returned countries for the named organisation, then search below returned organisations for a named person. This search requires three input values from the user: a country name, an organisation name and a personal name.

The above are just examples, which may or may not reflect the final DESIRE II service. Thus, the client must be configurable enough to support these and other search strategies

1.3 The Requirement

In a hierarchically organised directory database the lookup procedure consists of a sequence of search operations (locate possible target entries) followed by a set of read operations (retrieve resulting entries to get the required information). The example searches from Section 3 are illustrated in the figures below.

[image: image2.wmf]CN=Joe Bloggs

person

CN=DESIRE

tioObject

Search with filter:

CN=Joe

Bloggs &

objectClass=person

Figure 3.1 A White Pages Search Using a Personal Index

[image: image3.wmf]CN=

Organization

Index

tioObject

country

CN=Joe Bloggs

person

O=Widget Inc.

organization

Search with filter:

O=Widget &

objectClass=organization

Search with filter:

CN=Joe

Bloggs &

objectClass=person

Figure 3.2 A White Pages Search Using an Organizational Index

[image: image4.wmf]C=GB

country

CN=Joe Bloggs

person

O=Widget Inc.

organization

Search with filter:

O=Widget &

objectClass=organization

Search with filter:

CN=Joe

Bloggs &

objectClass=person

<root>

<none>

Search with filter:

C=GB &

objectClass=country

Figure 3.3 A White Pages Search

In most DUAs the steps shown would be performed manually by the user. This is fine when each search in the process returns only one entry. When a search returns many matches things get a little difficult. The search filter ‘O=Widget’ might yield a number of results, e.g.:

O=Widget Inc.
O=Widget Wizards
O=Widgets-R-Us

It might then be necessary for the user to search each organisation in order to locate the desired personal entry. Obviously, the greater the number of intermediate matches made, the more searches will have to be made later, and the more time consuming the search process becomes. Ideally, the entire search process should be automated such that users enter relevant search criteria and the DUA performs all subsequent searches without the need for user intervention.

1.4 Search Algorithm Overview

The proposed search algorithm is based on a set of rules representing a partial directory schema. Each rule consists of a single ‘search’ association, i.e. for a given type of entry what other can be found using a directory search operation. For example, a rule say that personal entries (objectclass=person) can be located from organisational entries (objectclass=organization) using a subtree search. A rule would actually consist of the following:

1. A search base object specification. This can be an object class (e.g. objectClass=organizationName) value or a DN (e.g. ‘cn=DESIRE Index’).

2. A search target object specification. This is an object class value, e.g objectClass=person.

3. A search filter specification. This can be any way of defining a filter. For the moment we’ll just define a filter as a set of attribute types that are applied using a simple substring filter generation procedure, i.e. if the input is ‘Joe Bloggs’ a specification containing the commonName attribute would result in the filter ‘commonName=*joe*bloggs*’.

A set of such rules can be thought of as heuristics that, collectively, describe a search strategy. The tables below list the rules required to define each of the example searches.

Rule #
Parent Specification
Child Specification
Filter Attributes

1
CN=Personal Index
ObjectClass=person
CommonName

Table 3.1. Rule Specifying a Search on a Personal Index

Rule #
Parent Specification
Child Specification
Filter Attributes

1
CN=Organisation Index
ObjectClass=organization
OrganizationName

2
ObjectClass=organization
ObjectClass=person
CommonName

Table 3.2. Rules Specifying a Search on an Organisational Index

Rule #
Parent Specification
Child Specification
Filter Attributes

1
“” (root entry)
ObjectClass=country
CountryName

2
ObjectClass=country
ObjectClass=organization
OrganizationName

3
ObjectClass=organization
ObjectClass=person
CommonName

Table 3.3. Rules Specifying a Search on a Traditional Directory Service

The rules listed in the tables above should not be hardwired into the search engine. Instead, they should be configured to allow for different schema usage and to allow for the addition of future search strategies. The 'Person' specification of objectclass=person may, for example, be replaced by objectclass=inetOrgPerson in some directory schema.

The search process can be thought of as a step-wise navigation of the directory tree, with the query deemed complete when an entry of the appropriate type (usually a person) has been found. The algorithm performs the navigation by, at each step, deciding what search to make in order to advance to the next entry. At any given point in the search the rule applied (and therefore the kind of LDAP search used) depends on two pieces of information:

1. The type of entry currently ‘occupied’ in the directory (i.e. the current point of DIT navigation).

2. The remaining search criteria, i.e. the search strings entered by the user. Consider the search criteria ‘person=Joe Bloggs’. In this case the search string ‘Joe Bloggs’ should only be applied when a rule permitting a search for an entry of object class person is available at the current point of navigation.

Figure 3.4 and Figure 3.5 below demonstrate how an automated search progresses using a personal index and a traditional White Pages directory respectively.

[image: image5.wmf]CN=Personal Index

CN=Joe Bloggs

ObjectClass=person

Apply Rule 1

Remaining Search Criteria

Current Point in Directory Tree

Initial Search Criteria

Person = Joe Bloggs

<none>

S

EARCH

P

ROGRESS

Figure 3.4. Automated Search Against a Personal Index (see Table 3.1 for Rules)

[image: image6.wmf]Joe Bloggs

Widget

GB

“”

 (root entry)

C=GB

ObjectClass=country

O=Widget Inc.

Objec

tClass=organization

CN=Joe Bloggs

ObjectClass=person

Apply Rule 3

Apply Rule 1

Apply Rule 2

Remaining Search Criteria

Current Point in Directory Tree

Initial Search Criteria

Person = Joe Bloggs

Organization = Widget

Country = GB

Person = Joe Bloggs

Organization = Widget

Person = Joe Bloggs

<none>

S

EARCH

P

ROGRESS

Figure 3.5. Automated Search on a Traditional Directory (see Table 3.3 for Rules)

The Figures above depict a fairly simple searches in operation. The algorithm generalises well to cases where multiple matches are made at each step. In this instance searches are made in parallel (this assumes use of asynchronous LDAP operations), and the results of all searches collated before going on to the next stage of the query.

1.5 Handling Referrals

Referral handling is in itself not a difficult problem. However, other issues do arise in the context of index server usage where a very large number of referrals may be returned given loose search criteria. This is not desirable for two reasons:

1. If each referral is automatically followed then load will be placed, unnecessarily, on a very large number of LDAP servers.

2. The size of any one LDAP operation result should be kept to a minimum. This will ensure that people working over slow connections (e.g.dial-up) do not suffer from adverse performance.

A number of mechanisms can be put in place to reduce the likelihood of a large number of referrals being returned and in a single LDAP result message:

1. Client auto-referral limit. Implement a configurable limit which, if hit, will prevent the client from automatically chasing all returned referrals. If the limit is hit the user should be asked to prune some of the referrals before the client will continue.

2. Paged results. The client could support the paged results LDAP extension which allows an LDAP search result to be returned in fractional parts of the overall result. This will allow the client to better manage the result and permit the visual feedback of the search whilst in progress. This feature is not in the LDAPv3 core specifications and so it is possible that both the client and server will need some special implementation work in order to support the relevant extension
.

3. Server referral limit. A server supplied error message (most probably 'administrative limit' could be used to notify the client of weak search criteria. In this event the user could be requested for further search criteria (possibly an organisation name) in order to reduce the number of overall hits.

PART IV

4 Bibliography

1. Lightweight Directory Access Protocol (v3) (RFC 2251) Mark Wahl (Critical Angle), Tim Howes (Netscape) and Steve Kille (ISODE Ltd)

2. The String Representation of LDAP Search Filters (RFC 2254) Tim Howes.

3. The LDAP URL Format (RFC 2255)
� LDAPv3 extension for paging of returned results is currently at the draft stage in the LDAP Extension group (ldapext) and has the following document draft identifier: draft-ietf-asid-ldapv3-simple-paged-03.txt.

Project RE 4004 (RE)
Page 1 of 1

_978252908.doc

CN=Joe Bloggs

person

O=Widget Inc.

organization

CN= Organization Index

tioObject

country

Search with filter:

CN=Joe Bloggs & objectClass=person

Search with filter:

O=Widget & objectClass=organization

_978435366.doc
[image: image1.png]Subrrit Search| Clear Form,
Person [Joe Bloggs

[image: image2.png]Subrrit Search| Clear Form,
Person [Joe Bloggs

CN=Personal Index

CN=Joe Bloggs

ObjectClass=person

Apply Rule 1

Search Progress

Remaining Search Criteria

Current Point in Directory Tree

Initial Search Criteria

Person = Joe Bloggs

<none>

� EMBED PBrush ���

_978351831

_978354108

_978515642.doc

Client

LDAP Server 1

Index Server

LDAP Server 2

LDAP Server n

1. Client Sends Search to Index Server

2. Index Server Returns a List of Referrals

3. Client Pushes Request to Referred LDAP Servers

_978434513.doc
[image: image1.png]L —
Organization _
T —

[image: image2.png]L —
Organization _
T —

� EMBED PBrush ���

Joe Bloggs

Widget

GB

“” (root entry)

C=GB

ObjectClass=country

O=Widget Inc.

ObjectClass=organization

CN=Joe Bloggs

ObjectClass=person

Apply Rule 1

Apply Rule 3

Apply Rule 2

Remaining Search Criteria

Current Point in Directory Tree

Initial Search Criteria

Person = Joe Bloggs

Organization = Widget

Country = GB

Person = Joe Bloggs

Organization = Widget

Person = Joe Bloggs

<none>

Search Progress

_978351831

_978252895.doc

CN=Joe Bloggs

person

CN=DESIRE tioObject

Search with filter:

CN=Joe Bloggs & objectClass=person

_978252881.doc

CN=Joe Bloggs

person

O=Widget Inc.

organization

C=GB

country

<root>

<none>

Search with filter:

CN=Joe Bloggs & objectClass=person

Search with filter:

O=Widget & objectClass=organization

Search with filter:

C=GB & objectClass=country

