Integrate Item Response Theory (IRT) and Federated Learning to estimate traditional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Models, with enhanced privacy. It allows for the estimation in a distributed manner without compromising accuracy. A user-friendly 'shiny' application is included.
Version: | 1.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | purrr, pracma, shiny, httr, callr, DT, ggplot2, shinyjs |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2024-09-28 |
DOI: | 10.32614/CRAN.package.FedIRT |
Author: | Biying Zhou [cre], Feng Ji [aut] |
Maintainer: | Biying Zhou <zby.zhou at mail.utoronto.ca> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
CRAN checks: | FedIRT results |
Reference manual: | FedIRT.pdf |
Package source: | FedIRT_1.1.0.tar.gz |
Windows binaries: | r-devel: FedIRT_1.1.0.zip, r-release: FedIRT_1.1.0.zip, r-oldrel: FedIRT_1.1.0.zip |
macOS binaries: | r-release (arm64): FedIRT_1.1.0.tgz, r-oldrel (arm64): FedIRT_1.1.0.tgz, r-release (x86_64): FedIRT_1.1.0.tgz, r-oldrel (x86_64): FedIRT_1.1.0.tgz |
Old sources: | FedIRT archive |
Please use the canonical form https://CRAN.R-project.org/package=FedIRT to link to this page.