This R package can be used to generate artificial data conditionally on pre-specified (simulated or user-defined) relationships between the variables and/or observations. Each observation is drawn from a multivariate Normal distribution where the mean vector and covariance matrix reflect the desired relationships. Outputs can be used to evaluate the performances of variable selection, graphical modelling, or clustering approaches by comparing the true and estimated structures.
The released version of the package can be installed from CRAN with:
install.packages("fake")
The development version can be installed from GitHub:
::install_github("barbarabodinier/fake") remotes
library(fake)
set.seed(1)
<- SimulateRegression(n = 100, pk = 20)
simul head(simul$xdata)
head(simul$ydata)
set.seed(1)
<- SimulateRegression(n = 100, pk = 20, family = "binomial")
simul head(simul$ydata)
set.seed(1)
<- SimulateStructural(n = 100, pk = c(3, 2, 3))
simul head(simul$data)
set.seed(1)
<- SimulateGraphical(n = 100, pk = 20)
simul head(simul$data)
set.seed(1)
<- SimulateClustering(n = c(10, 10, 10), pk = 20)
simul head(simul$data)
The true model structure is returned in the output of any of the main functions in:
$theta simul
The functions print()
, summary()
and
plot()
can be used on the outputs from the main
functions.