The purpose of this vignette is to illustrate the various approaches in forecsatML
for producing final forecasts that are (a) a combination of short- and long-term forecasts as well as (b) a combination of many ML models at select forecast horizons.
The goal of forecastML::combine_forecasts()
is to provide maximum flexibility when producing a single forecast that is expected to perform as well in the near-term as it is in the long-term.
Forecast combinations with forecastML::combine_forecasts(..., type = "horizon")
are a simple and effective method for producing final forecasts that consist of (a) an ensemble of short- and long-term forecasts and (b) an ensemble of separately trained ML models at any forecast horizon.
Below are 3 examples:
horizons <- c(1, 3, 6, 9, 12)
data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
windows <- forecastML::create_windows(data_train, window_length = 0)
model_fun <- function(data) {
x <- as.matrix(data[, -1, drop = FALSE])
y <- as.matrix(data[, 1, drop = FALSE])
set.seed(1)
model <- glmnet::cv.glmnet(x, y, nfolds = 5)
}
model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun)
prediction_fun <- function(model, data_features) {
data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)),
"y_pred_lower" = predict(model, as.matrix(data_features)) - 30,
"y_pred_upper" = predict(model, as.matrix(data_features)) + 30)
}
data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
data_forecasts <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast)
data_forecasts <- forecastML::combine_forecasts(data_forecasts, type = "horizon")
plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)])
combine_forecasts(..., agregate = function)
(see example 3 below).
forecastML::train_model()
uses too much memory. Here, you would train one model at a time and combine them with forecastML::combine_forecasts()
.
# LASSO
horizons <- c(1, 3, 6)
data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
windows <- forecastML::create_windows(data_train, window_length = 0)
model_fun_lasso <- function(data) {
x <- as.matrix(data[, -1, drop = FALSE])
y <- as.matrix(data[, 1, drop = FALSE])
set.seed(1)
model <- glmnet::cv.glmnet(x, y, alpha = 1, nfolds = 5)
}
model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun_lasso)
prediction_fun <- function(model, data_features) {
data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)),
"y_pred_lower" = predict(model, as.matrix(data_features)) - 30,
"y_pred_upper" = predict(model, as.matrix(data_features)) + 30)
}
data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
data_forecasts_lasso <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast)
#------------------------------------------------------------------------------
# Ridge
horizons <- c(9, 12)
data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
windows <- forecastML::create_windows(data_train, window_length = 0)
model_fun_ridge <- function(data) {
x <- as.matrix(data[, -1, drop = FALSE])
y <- as.matrix(data[, 1, drop = FALSE])
set.seed(1)
model <- glmnet::cv.glmnet(x, y, alpha = 0, nfolds = 5)
}
model_results <- forecastML::train_model(data_train, windows, model_name = "Ridge", model_function = model_fun_ridge)
prediction_fun <- function(model, data_features) {
data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)),
"y_pred_lower" = predict(model, as.matrix(data_features)) - 30,
"y_pred_upper" = predict(model, as.matrix(data_features)) + 30)
}
data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
data_forecasts_ridge <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast)
#------------------------------------------------------------------------------
# Forecast combination.
data_forecasts <- forecastML::combine_forecasts(data_forecasts_lasso, data_forecasts_ridge, type = "horizon")
plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)])
combine_forecasts(..., agregate = function)
.median()
.# LASSO
horizons <- c(1, 3, 6, 9, 12)
data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
windows <- forecastML::create_windows(data_train, window_length = 0)
model_fun_lasso <- function(data) {
x <- as.matrix(data[, -1, drop = FALSE])
y <- as.matrix(data[, 1, drop = FALSE])
set.seed(1)
model <- glmnet::cv.glmnet(x, y, alpha = 1, nfolds = 5)
}
model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun_lasso)
prediction_fun <- function(model, data_features) {
data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)),
"y_pred_lower" = predict(model, as.matrix(data_features)) - 30,
"y_pred_upper" = predict(model, as.matrix(data_features)) + 30)
}
data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
data_forecasts_lasso <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast)
#------------------------------------------------------------------------------
# Ridge
horizons <- c(1, 3, 6, 9, 12)
data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
windows <- forecastML::create_windows(data_train, window_length = 0)
model_fun_ridge <- function(data) {
x <- as.matrix(data[, -1, drop = FALSE])
y <- as.matrix(data[, 1, drop = FALSE])
set.seed(1)
model <- glmnet::cv.glmnet(x, y, alpha = 0, nfolds = 5)
}
model_results <- forecastML::train_model(data_train, windows, model_name = "Ridge", model_function = model_fun_ridge)
prediction_fun <- function(model, data_features) {
data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)),
"y_pred_lower" = predict(model, as.matrix(data_features)) - 30,
"y_pred_upper" = predict(model, as.matrix(data_features)) + 30)
}
data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct",
outcome_col = 1, lookback = 1:15, horizon = horizons)
data_forecasts_ridge <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast)
#------------------------------------------------------------------------------
# Forecast combination.
data_forecasts <- forecastML::combine_forecasts(data_forecasts_lasso, data_forecasts_ridge,
type = "horizon", aggregate = stats::median)
plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)])