A Data Package is a simple container format to describe and package a collection of (tabular) data. It is typically used to publish FAIR and open datasets. In this tutorial we will show you how to read, create, edit and write Data Packages with the frictionless.
Load frictionless with:
To read a Data Package, you need to know the path or URL to its
descriptor file, named datapackage.json
. That file
describes the Data Package, provides access points to its Data Resources
and can contain dataset-level metadata. Let’s read a Data Package
descriptor file published on Zenodo:
read_package()
returns the content of
datapackage.json
as a list with class
datapackage
. When printing a Data Package, you get a
summary of its contents:
package
#> A Data Package with 3 resources:
#> • reference-data
#> • gps
#> • acceleration
#> For more information, see <https://doi.org/10.5281/zenodo.10053702>.
#> Use `unclass()` to print the Data Package as a list.
Since a Data Package is a list, you can pass it to functions that
work on lists, such as str()
:
str(package, list.len = 3)
#> List of 4
#> $ id : chr "https://doi.org/10.5281/zenodo.10053702"
#> $ profile : chr "tabular-data-package"
#> $ resources:List of 3
#> ..$ :List of 7
#> .. ..$ name : chr "reference-data"
#> .. ..$ path : chr "O_WESTERSCHELDE-reference-data.csv"
#> .. ..$ profile : chr "tabular-data-resource"
#> .. .. [list output truncated]
#> ..$ :List of 7
#> .. ..$ name : chr "gps"
#> .. ..$ path : chr [1:3] "O_WESTERSCHELDE-gps-2018.csv.gz" "O_WESTERSCHELDE-gps-2019.csv.gz" "O_WESTERSCHELDE-gps-2020.csv.gz"
#> .. ..$ profile : chr "tabular-data-resource"
#> .. .. [list output truncated]
#> ..$ :List of 7
#> .. ..$ name : chr "acceleration"
#> .. ..$ path : chr [1:3] "O_WESTERSCHELDE-acceleration-2018.csv.gz" "O_WESTERSCHELDE-acceleration-2019.csv.gz" "O_WESTERSCHELDE-acceleration-2020.csv.gz"
#> .. ..$ profile : chr "tabular-data-resource"
#> .. .. [list output truncated]
#> [list output truncated]
#> - attr(*, "class")= chr [1:2] "datapackage" "list"
The most important aspect of a Data Package are its Data
Resources, which describe and point to the data. You can list
all included resources with resources()
:
This Data Package has 3 resources. Let’s read the data from the
gps
resource into a data frame:
gps <- read_resource(package, "gps")
gps
#> # A tibble: 73,047 × 21
#> `event-id` visible timestamp `location-long` `location-lat`
#> <dbl> <lgl> <dttm> <dbl> <dbl>
#> 1 14256075762 TRUE 2018-05-25 16:11:37 4.25 51.3
#> 2 14256075763 TRUE 2018-05-25 16:16:41 4.25 51.3
#> 3 14256075764 TRUE 2018-05-25 16:21:29 4.25 51.3
#> 4 14256075765 TRUE 2018-05-25 16:26:28 4.25 51.3
#> 5 14256075766 TRUE 2018-05-25 16:31:21 4.25 51.3
#> 6 14256075767 TRUE 2018-05-25 16:36:09 4.25 51.3
#> 7 14256075768 TRUE 2018-05-25 16:40:57 4.25 51.3
#> 8 14256075769 TRUE 2018-05-25 16:45:55 4.25 51.3
#> 9 14256075770 TRUE 2018-05-25 16:50:49 4.25 51.3
#> 10 14256075771 TRUE 2018-05-25 16:55:36 4.25 51.3
#> # ℹ 73,037 more rows
#> # ℹ 16 more variables: `bar:barometric-pressure` <dbl>,
#> # `external-temperature` <dbl>, `gps:dop` <dbl>, `gps:satellite-count` <dbl>,
#> # `gps-time-to-fix` <dbl>, `ground-speed` <dbl>, heading <dbl>,
#> # `height-above-msl` <dbl>, `location-error-numerical` <dbl>,
#> # `manually-marked-outlier` <lgl>, `vertical-error-numerical` <dbl>,
#> # `sensor-type` <chr>, `individual-taxon-canonical-name` <chr>, …
The data frame contains all GPS records, even though the actual data
were split over multiple CSV
zipped files. read_resource()
assigned the column names
and types based on the Table Schema that was defined for that resource,
not the headers of the CSV file.
You can also read data from a local (e.g. downloaded) Data Package. In fact, there is one included in frictionless, let’s read that one from disk:
local_package <- read_package(
system.file("extdata", "datapackage.json", package = "frictionless")
)
local_package
#> A Data Package with 3 resources:
#> • deployments
#> • observations
#> • media
#> Use `unclass()` to print the Data Package as a list.
read_resource(local_package, "media")
#> # A tibble: 3 × 5
#> media_id deployment_id observation_id timestamp file_path
#> <chr> <chr> <chr> <chr> <chr>
#> 1 aed5fa71-3ed4-4284-a6ba-3550… 1 1-1 2020-09-… https://…
#> 2 da81a501-8236-4cbd-aa95-4bc4… 1 1-1 2020-09-… https://…
#> 3 0ba57608-3cf1-49d6-a5a2-fe68… 1 1-1 2020-09-… https://…
Data from the media
was not stored in a CSV file, but
directly in the data
property of that resource in
datapackage.json
. read_resource()
will
automatically detect where to read data from.
Data Package is a good format to technically describe your data, e.g. if you are planning to deposit it on research repository. It also goes a long way meeting FAIR principles.
Frictionless assumes your data are stored as a data frame or CSV
files. Let’s use the built-in dataset iris
as your data
frame:
# Show content of the data frame "iris"
dplyr::as_tibble(iris)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
Create a Data Package with create_package()
and add your
data frame as a resource with the name iris
:
# Load dplyr or magrittr to support %>% pipes
library(dplyr, warn.conflicts = FALSE) # or library(magrittr)
my_package <-
create_package() %>%
add_resource(resource_name = "iris", data = iris)
Note that you can chain most frictionless functions together using
pipes (%>%
or |>
), which improves
readability.
my_package
now contains one resource:
my_package
#> A Data Package with 1 resource:
#> • iris
#> Use `unclass()` to print the Data Package as a list.
By default, add_resource()
will create a Table
Schema for your data frame, describing its field names, field
types and (for factors) constraints. You can retrieve the schema of a
resource with get_schema()
. It is a list, which we print
here using str()
:
iris_schema <-
my_package %>%
get_schema("iris")
str(iris_schema)
#> List of 1
#> $ fields:List of 5
#> ..$ :List of 2
#> .. ..$ name: chr "Sepal.Length"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Sepal.Width"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Petal.Length"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Petal.Width"
#> .. ..$ type: chr "number"
#> ..$ :List of 3
#> .. ..$ name : chr "Species"
#> .. ..$ type : chr "string"
#> .. ..$ constraints:List of 1
#> .. .. ..$ enum: chr [1:3] "setosa" "versicolor" "virginica"
You can also create a schema from a data frame, using
create_schema()
:
iris_schema <- create_schema(iris)
str(iris_schema)
#> List of 1
#> $ fields:List of 5
#> ..$ :List of 2
#> .. ..$ name: chr "Sepal.Length"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Sepal.Width"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Petal.Length"
#> .. ..$ type: chr "number"
#> ..$ :List of 2
#> .. ..$ name: chr "Petal.Width"
#> .. ..$ type: chr "number"
#> ..$ :List of 3
#> .. ..$ name : chr "Species"
#> .. ..$ type : chr "string"
#> .. ..$ constraints:List of 1
#> .. .. ..$ enum: chr [1:3] "setosa" "versicolor" "virginica"
Doing so allows you to customize the schema before adding the
resource. E.g. let’s add a description for
Sepal.Length
:
iris_schema$fields[[1]]$description <- "Sepal length in cm."
# Show result
str(iris_schema$fields[[1]])
#> List of 3
#> $ name : chr "Sepal.Length"
#> $ type : chr "number"
#> $ description: chr "Sepal length in cm."
Since schema is a list, you can use {purrr}
to edit
multiple elements at once:
# Remove description for first field
iris_schema$fields[[1]]$description <- NULL
# Set descriptions for all fields
descriptions <- c(
"Sepal length in cm.",
"Sepal width in cm.",
"Pedal length in cm.",
"Pedal width in cm.",
"Iris species."
)
iris_schema$fields <- purrr::imap(
iris_schema$fields,
~ c(.x, description = descriptions[.y])
)
str(iris_schema)
#> List of 1
#> $ fields:List of 5
#> ..$ :List of 3
#> .. ..$ name : chr "Sepal.Length"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Sepal length in cm."
#> ..$ :List of 3
#> .. ..$ name : chr "Sepal.Width"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Sepal width in cm."
#> ..$ :List of 3
#> .. ..$ name : chr "Petal.Length"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Pedal length in cm."
#> ..$ :List of 3
#> .. ..$ name : chr "Petal.Width"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Pedal width in cm."
#> ..$ :List of 4
#> .. ..$ name : chr "Species"
#> .. ..$ type : chr "string"
#> .. ..$ constraints:List of 1
#> .. .. ..$ enum: chr [1:3] "setosa" "versicolor" "virginica"
#> .. ..$ description: chr "Iris species."
Let’s add iris
as a resource to your Data Package again,
but this time with the customized schema. Let’s also add
title
and description
as a metadata
properties. Note that you have to remove the originally added resource
iris
with remove_resource()
first, since Data
Packages can only contain uniquely named resources:
my_package <-
my_package %>%
remove_resource("iris") %>% # Remove originally added resource
add_resource(
resource_name = "iris",
data = iris,
schema = iris_schema, # Your customized schema
title = "Iris dataset", # Your additional metadata
description = "The built-in dataset in R."
)
If you already have your data stored as CSV or TSV files and you want to include them as is as a Data Resource, you can do so as well. As with data frames, you can opt to create a Table Schema automatically or provide your own.
# Two TSV files with the same structure
path_1 <- system.file("extdata", "observations_1.tsv", package = "frictionless")
path_2 <- system.file("extdata", "observations_2.tsv", package = "frictionless")
# Add both TSV files as a single resource
my_package <-
my_package %>%
add_resource(
resource_name = "observations",
data = c(path_1, path_2),
delim = "\t"
)
Your Data Package now contains 2 resources, but you can add metadata
properties as well (see the Data
Package documentation for an overview). Since it is a list, you can
use append()
to insert properties at the desired place.
Let’s add name
as first and title
as second
property:
my_package <- append(my_package, c(name = "my_package"), after = 0)
my_package <- append(my_package, c(title = "My package"), after = 1)
# Warning: append() drops the custom datapackage class.
# It can be added again by running my_package through create_package()
my_package <- create_package(my_package)
Note that in the above steps you started a Data Package from scratch
with create_package()
, but you can use the same
functionality to edit an existing Data Package read with
read_package()
.
Now that you have created your Data Package, you can write it to a
directory of your choice with write_package()
:
The directory will contain four files: the descriptor
datapackage.json
, one CSV file containing the data for the
resource iris
and two TSV files containing the data for the
resource observations
.
list.files("my_directory")
#> [1] "datapackage.json" "iris.csv" "observations_1.tsv" "observations_2.tsv"
Frictionless does not provide functionality to deposit your Data Package on a research repository such as Zenodo, but here are some tips:
frictionless validate datapackage.json
.compress = TRUE
in write_package()
to
reduce the size of the deposit. It will zip the individual CSV files,
not the entire Data Package. That way, users still have direct access to
the datapackage.json
file. See this
example.datapackage.json
(fields, units, the dataset identifier in
id
). Authors, methodology, license, etc. are better
described in the metadata fields the research repository provides.We also recommend having a look at {deposits}
, which
provides a universal interface to deposit and access data in a research
repository. It uses frictionless under the hood.