This document explains time series related plotting using ggplot2
and {ggfortify}
.
{ggfortify}
let {ggplot2}
know how to interpret ts
objects. After loading {ggfortify}
, you can use ggplot2::autoplot
function for ts
objects.
library(ggfortify)
autoplot(AirPassengers)
To change line colour and line type, use ts.colour
and ts.linetype
options. Use help(autoplot.ts)
(or help(autoplot.*)
for any other objects) to check available options.
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
Multivariate time series will be drawn with facets.
library(vars)
data(Canada)
autoplot(Canada)
Specify facets = FALSE
to draw on single axes.
autoplot(Canada, facets = FALSE)
Also, autoplot
can handle other time-series-likes. Supported packages are:
zoo::zooreg
xts::xts
timeSeries::timSeries
tseries::irts
library(xts)
autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries)
autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
You can change {ggplot2}
geometrics specifying by its name. Geometrics currently supported are line
, bar
, ribbon
and point
.
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'ribbon', fill = 'green')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
As described above, multivariate timeseries can be drawn in a single grid specifying facets = FALSE
. Time series are not stacked by default. Specifying stacked = TRUE
allows stacking.
mts <- ts(data.frame(a = c(1, 2, 3, 4, 4, 3), b = c(3, 2, 3, 2, 2, 1)), start = 2010)
autoplot(mts, ts.geom = 'bar', facets = FALSE)
autoplot(mts, ts.geom = 'bar', facets = FALSE, stacked = TRUE)
autoplot(mts, ts.geom = 'ribbon', facets = FALSE)
autoplot(mts, ts.geom = 'ribbon', facets = FALSE, stacked = TRUE)
{ggfortify}
supports forecast
object in the {forecast}
package.
library(forecast)
d.arima <- auto.arima(AirPassengers)
d.forecast <- forecast(d.arima, level = c(95), h = 50)
autoplot(d.forecast)
There are some options to change basic settings.
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red',
predict.linetype = 'dashed', conf.int = FALSE)
ggfortify
supports varpred
object in vars
package.
library(vars)
d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1]
d.var <- VAR(Canada, p = d.vselect, type = 'const')
Available options are the same as forecast
.
autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4',
predict.colour = 'blue', predict.linetype = 'dashed')
{ggfortify, eval=hasDep}
supports cpt
object in {changepoint}
package.
library(changepoint)
autoplot(cpt.meanvar(AirPassengers))
You can change some options for cpt
.
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
ggfortify
supports breakpoints
object in strucchange
package. Same plotting options as changepoint
are available.
library(strucchange)
autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed',
cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
{KFAS}
packageYou can use autoplot
in almost the same manner as {dlm}
. Note that autoplot
draws smoothed result if it exists in KFAS::KFS
instance, and KFAS::KFS
contains smoothed result by default.
library(KFAS)
model <- SSModel(
Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA)
)
fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS")
smoothed <- KFS(fit$model)
autoplot(smoothed)
If you want filtered result, specify smoothing='none'
when calling KFS
. For details, see help(KFS)
.
filtered <- KFS(fit$model, filtering="mean", smoothing='none')
autoplot(filtered)
Also, KFAS::signal
will retrieve specific state from KFAS::KFS
instance. The result will be a list
which contains the retrieved state as ts
in signal
attribute. ggfortify
can autoplot it using class inference.
trend <- signal(smoothed, states="trend")
class(trend)
## [1] "list"
Because signal
is a ts
instance, you can use autoplot
and p
option as the same as dlm::dlmSmooth
example.
p <- autoplot(filtered)
autoplot(trend, ts.colour = 'blue', p = p)
{ggfortify}
supports following time series related statistics in stats
package:
stl
, decomposed.ts
acf
, pacf
, ccf
spec.ar
, spec.pgram
cpgram
(covered by ggcpgram
)autoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
NOTE With acf
and spec.*
, specify plot = FALSE
to suppress default plotting outputs.
autoplot(acf(AirPassengers, plot = FALSE))
You can pass some options when plotting acf
via autoplot
. Built-in acf
calcurates the confidence interval at plotting time and doesn’t hold the result, equivalent options can be passed to autoplot
. Following example shows to change the value of confidence interval and method (use ma
assuming the input follows MA model).
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram
should output the cumulative periodogram as the same as cpgram
. Because cpgram
doesn’t have return value, we cannot use autoplot(cpgram(...))
.
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
ggtsdiag
should output the similar diagram as tsdiag
.
library(forecast)
ggtsdiag(auto.arima(AirPassengers))
ggfreqplot
is a genelarized month.plot
. You can pass freq
if you want, otherwise time-series’s frequency will be used.
ggfreqplot(AirPassengers)
ggfreqplot(AirPassengers, freq = 4)