grpsel
is an R package for group subset selection (see
https://arxiv.org/abs/2105.12081).
For a response vector \(\mathbf{y}=(y_1,\ldots,y_n)^\top\),
predictor matrix \(\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)^\top\),
and a set of \(g\) groups,
grpsel
is capable of approximately solving problems of the
form: \[
\min_\beta
\sum_{i=1}^n\ell(\mathbf{x}_i^\top\beta,y_i)+\lambda\sum_{k=1}^g1(\|\beta_k\|\neq0)+\gamma\sum_{k=1}^g\|\beta_k\|^q,\quad
q\in\{1,2\}
\] where the first term is a loss function (square or logistic),
the second term is a group subset selection penalty, and the third term
is a shrinkage penalty (specifically, a group lasso penalty if \(q=1\) and a ridge penalty if \(q=2\)). The notation \(\beta_k\) denotes the coefficients \(\beta\) belonging to the \(k\)th group.
Group-sparse regression arises in numerous settings in modern data analytic work, including selection with categorical predictors, multitask (multiresponse) learning, hierarchical selection, and nonparametric additive regression. We demonstrate some examples of these applications below.
The grpsel
package provides a simple set of functions
for handling grouped selection in R. The two main functions provided by
the package are grpsel()
and cv.grpsel()
,
responsible for model fitting and cross-validation, respectively.
The grpsel()
function provides a convenient way of
performing group subset selection for a path of \(\lambda\). To demonstrate this
functionality, let’s simulate some grouped data.
set.seed(123)
<- 100 # Number of observations
n <- 10 # Number of predictors
p <- 5 # Number of groups
g <- rep(1:g, each = p / g) # Group structure
group <- numeric(p)
beta which(group %in% 1:2)] <- 1 # First two groups are nonzero
beta[<- matrix(rnorm(n * p), n, p)
x <- x %*% beta + rnorm(n) y
The first two groups explain the response while the rest are unimportant.
library(grpsel)
<- grpsel(x, y, group) fit
The group
argument is optional, and if left unspecified,
each predictor will be assigned to its own group (leading to ungrouped
variable selection).
The values of \(\lambda\) are
automatically computed from the data, providing a path of solutions from
the null model to the full model. These solutions can be extracted using
the coef()
function.
coef(fit)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.1870419 0.1409381 0.1363219 0.14577657 0.14818803 0.13693870
#> [2,] 0.0000000 0.0000000 1.0738565 1.06824820 1.05330570 1.06458112
#> [3,] 0.0000000 0.0000000 0.9734311 0.98498345 0.98057908 0.99567892
#> [4,] 0.0000000 0.7399178 0.8432186 0.83820508 0.84769346 0.85285167
#> [5,] 0.0000000 1.1879367 1.1940502 1.15017753 1.14165312 1.13815099
#> [6,] 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.07012182
#> [7,] 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 -0.03724315
#> [8,] 0.0000000 0.0000000 0.0000000 0.00000000 0.09499731 0.09296110
#> [9,] 0.0000000 0.0000000 0.0000000 0.00000000 0.09697281 0.10961805
#> [10,] 0.0000000 0.0000000 0.0000000 -0.06559522 -0.05491667 -0.04951346
#> [11,] 0.0000000 0.0000000 0.0000000 0.13293905 0.13484139 0.13699716
Each of the columns above corresponds to a set of estimated
coefficients for a particular value of \(\lambda\), with the first row containing
the intercept terms. These coefficients can be visualised via the
plot()
function.
plot(fit)
The plot above omits the intercept terms and displays the coefficients by the number of selected groups rather than \(\lambda\).
The predict()
function is available to make predictions
for new data.
<- matrix(rnorm(10 * p), 10, p)
x.new predict(fit, x.new)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.1870419 0.2474754 0.5547334 0.4828247 0.5505698 0.5159474
#> [2,] 0.1870419 -1.0364437 0.6014120 0.9496678 1.0179290 1.0539641
#> [3,] 0.1870419 1.7299335 3.2266509 3.5362877 3.4558829 3.4516054
#> [4,] 0.1870419 -1.1671608 -3.5933701 -3.4910744 -3.4566040 -3.4945212
#> [5,] 0.1870419 -1.4625154 -0.3259065 -0.4122397 -0.4797968 -0.5027092
#> [6,] 0.1870419 1.6731365 2.5022256 2.4825564 2.4170965 2.3978358
#> [7,] 0.1870419 -0.8084083 -1.9495455 -1.9342569 -1.9434672 -2.0253390
#> [8,] 0.1870419 1.3557892 0.9618111 1.1240626 1.1827934 1.2321732
#> [9,] 0.1870419 2.2387387 2.3907195 2.1533365 1.8768519 1.8623801
#> [10,] 0.1870419 -1.2059448 -3.1525808 -2.9586382 -2.9207032 -2.9395051
Again, the columns represent predictions for different values of \(\lambda\).
By default, grpsel
sets \(\gamma=0\). In certain situations, the
shrinkage induced by the setting \(\gamma>0\) is desirable (e.g., when the
level of noise is high). To fit the model for both \(\lambda\) and \(\gamma\), use the argument
penalty='grSubset+grLasso'
or
penalty='grSubset+Ridge'
. To extract the coefficients for
specific values of \(\lambda\) and
\(\gamma\), the lambda
and
gamma
arguments of coef()
are available.
<- grpsel(x, y, group, penalty = 'grSubset+grLasso')
fit coef(fit, lambda = 0.05, gamma = 0.1)
#> [,1]
#> [1,] 0.1474263
#> [2,] 0.9059429
#> [3,] 0.8479202
#> [4,] 0.7198753
#> [5,] 1.0439736
#> [6,] 0.0000000
#> [7,] 0.0000000
#> [8,] 0.0000000
#> [9,] 0.0000000
#> [10,] 0.0000000
#> [11,] 0.0000000
<- grpsel(x, y, group, penalty = 'grSubset+Ridge')
fit coef(fit, lambda = 0.05, gamma = 0.1)
#> [,1]
#> [1,] 0.1442755
#> [2,] 0.9632668
#> [3,] 0.8929407
#> [4,] 0.7565775
#> [5,] 1.0884522
#> [6,] 0.0000000
#> [7,] 0.0000000
#> [8,] 0.0000000
#> [9,] 0.0000000
#> [10,] 0.0000000
#> [11,] 0.0000000
Similar arguments exist for predict()
.
In practice, \(\lambda\) and \(\gamma\) usually need to be
cross-validated. The cv.grpsel()
function provides a
convenient way to perform group subset selection with
cross-validation.
<- cv.grpsel(x, y, group, penalty = 'grSubset+Ridge', nfold = 10) # 10-fold cross-validation fit
The cross-validation results are easily visualised using the
plot()
function.
plot(fit)
The plot above shows the cross-validated loss (square or logistic) as
a function of the number of selected groups for the best cross-validated
value of \(\gamma\). Plots for other
values of \(\gamma\) can be produced
using the gamma
argument of plot()
.
The coef()
and predict()
functions applied
to the output of cv.grpsel()
return results corresponding
to the values of \(\lambda\) and \(\gamma\) that minimise the cross-validated
mean square error.
coef(fit)
#> [,1]
#> [1,] 0.1363415
#> [2,] 1.0735914
#> [3,] 0.9732420
#> [4,] 0.8430108
#> [5,] 1.1938004
#> [6,] 0.0000000
#> [7,] 0.0000000
#> [8,] 0.0000000
#> [9,] 0.0000000
#> [10,] 0.0000000
#> [11,] 0.0000000
predict(fit, x.new)
#> [,1]
#> [1,] 0.5546395
#> [2,] 0.6013611
#> [3,] 3.2260534
#> [4,] -3.5925209
#> [5,] -0.3257647
#> [6,] 2.5016732
#> [7,] -1.9490490
#> [8,] 0.9616619
#> [9,] 2.3903344
#> [10,] -3.1518596
grpsel()
does not need to be run after using
cv.grpsel()
, as the latter calls the former and saves the
result as fit$fit
.
Finally, to perform a logistic regression fit, set
loss='logistic'
.
<- rbinom(n, 1, 1 / (1 + exp(- x %*% beta)))
y <- cv.grpsel(x, y, group, loss = 'logistic')
fit coef(fit)
#> [,1]
#> [1,] 0.2634796
#> [2,] 1.1012157
#> [3,] 1.0824249
#> [4,] 1.3042438
#> [5,] 0.8973998
#> [6,] 0.0000000
#> [7,] 0.0000000
#> [8,] 0.0000000
#> [9,] 0.0000000
#> [10,] 0.0000000
#> [11,] 0.0000000
It is straightforward to model overlapping groups using
grpsel
. To demonstrate, suppose there are ten predictors
spread among two groups: \(\{1,2,3,4,5,6\}\) and \(\{5,6,7,8,9,10\}\), where \(x_5\) and \(x_6\) belong to both groups.
<- matrix(rnorm(n * p), n, p)
x <- rowSums(x) + rnorm(n)
y <- list(1:6, 5:10)
group <- grpsel(x, y, group) fit
The object group
is now a list of groups rather than a
vector.
coef(fit)
#> [,1] [,2] [,3]
#> [1,] 0.02193046 -0.3513713 -0.05257854
#> [2,] 0.00000000 1.0590892 0.96774167
#> [3,] 0.00000000 1.1276923 1.15569494
#> [4,] 0.00000000 0.8306162 0.96424793
#> [5,] 0.00000000 1.0351453 1.11730453
#> [6,] 0.00000000 1.1722285 1.11375229
#> [7,] 0.00000000 0.8029290 0.96864748
#> [8,] 0.00000000 0.0000000 0.88225886
#> [9,] 0.00000000 0.0000000 1.04247927
#> [10,] 0.00000000 0.0000000 0.87981630
#> [11,] 0.00000000 0.0000000 0.92065396
Under the hood, the overlapping groups are handled using a latent coefficient approach. See https://arxiv.org/abs/2105.12081 for more information.
The primary algorithm driving grpsel
is coordinate
descent. Sometimes when the groups are strongly correlated, the estimate
produced by coordinate descent can be improved using local search. This
algorithm runs on top of coordinate descent. To use local search, set
local.search=T
.
<- rep(1:g, each = p / g)
group <- matrix(rnorm(n * p), n, p) + matrix(rnorm(n), n, p)
x which(group %in% 1:2)] <- 1 # First two groups are nonzero
beta[<- x %*% beta + rnorm(n)
y <- cv.grpsel(x, y, group)
fit coef(fit)
#> [,1]
#> [1,] -0.01635903
#> [2,] 0.95557006
#> [3,] 1.24236451
#> [4,] 0.92888981
#> [5,] 0.78221128
#> [6,] 0.13708882
#> [7,] 0.18160260
#> [8,] -0.21054320
#> [9,] -0.03611143
#> [10,] 0.00000000
#> [11,] 0.00000000
<- cv.grpsel(x, y, group, local.search = T)
fit coef(fit)
#> [,1]
#> [1,] 0.02690425
#> [2,] 0.98993334
#> [3,] 1.20206912
#> [4,] 0.98561726
#> [5,] 0.81895840
#> [6,] 0.00000000
#> [7,] 0.00000000
#> [8,] 0.00000000
#> [9,] 0.00000000
#> [10,] 0.00000000
#> [11,] 0.00000000
The correct groups are not selected without local search in this high-correlation example.
In this section, we show how grpsel
can be used to fit a
variety of statistical models.
Multitask learning is useful where the response is a matrix and it is suspected that each of its columns can be explained by the same subset of predictors. In this case, we would like to perform a single fit rather than individual fits on each column.
In this example, we will simulate ten response variables, each depending on the first five predictors.
<- 10 # Number of response variables
m <- matrix(0, p, m)
beta 1:5, ] <- 1
beta[<- matrix(rnorm(n * p), n, p)
x <- x %*% beta + matrix(rnorm(n * m), n, m)
y
<- matrix(y, ncol = 1)
y <- diag(m) %x% x
x <- rep(1:p, m)
group
<- cv.grpsel(x, y, group)
cvfit matrix(coef(cvfit)[- 1, , drop = F], ncol = m)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1.0338013 0.8942857 0.8882466 0.9107143 1.0034279 1.1095664 1.0604750
#> [2,] 1.1239842 0.8762186 0.9103406 1.0858450 0.9095743 1.0419114 1.2156836
#> [3,] 0.9980841 1.0808339 0.9224392 0.9451404 1.1005818 1.0579970 0.9697167
#> [4,] 0.8153082 0.9034146 1.0668537 0.8761911 1.0157048 1.0683427 0.9269141
#> [5,] 0.8864655 0.7751244 0.9415790 1.0631036 0.9908681 0.8868114 0.9441526
#> [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [,8] [,9] [,10]
#> [1,] 1.0611635 1.3355557 0.9833819
#> [2,] 1.0456646 1.0476437 1.0841175
#> [3,] 0.9171092 0.7631579 0.9177739
#> [4,] 1.0303281 0.9229071 0.7567556
#> [5,] 0.8862811 1.1295866 1.0961600
#> [6,] 0.0000000 0.0000000 0.0000000
#> [7,] 0.0000000 0.0000000 0.0000000
#> [8,] 0.0000000 0.0000000 0.0000000
#> [9,] 0.0000000 0.0000000 0.0000000
#> [10,] 0.0000000 0.0000000 0.0000000
The groups have enforced the constraint that all ten response variables share the same subset of predictors.
Group selection can be used to fit sparse nonparametric additive models of the form \[y=\sum_{j=1}^pf_j(x_j)+\epsilon.\] To fit these models we can approximate \(f_1,\ldots,f_p\) using regression splines. In this example, the predictors are uniform on \([0,1]\) and the generating functions are \[ \begin{aligned} f_1(x) &= \sin(2\pi x), \\ f_2(x) &= \cos(2\pi x), \\ f_3(x) &= 0,\,\text{and} \\ &~~\vdots \\ f_p(x) &= 0. \end{aligned} \] We will use natural cubic splines with five basis functions to fit this model. The basis functions of each spline form a group, and we have one such group for each predictor.
<- matrix(runif(n * p), n, p)
x <- sinpi(2 * x[, 1]) + cospi(2 * x[, 2]) + rnorm(n, sd = 0.1)
y <- 5
df <- lapply(1:p, \(j) splines::ns(x[, j], df = df))
splines <- do.call(cbind, splines)
x.s <- rep(1:p, each = df)
group <- cv.grpsel(x.s, y, group) fit
Let’s check that the first two predictors have been selected correctly.
unique(group[coef(fit)[- 1] != 0])
#> [1] 1 2
The fitted functions can be plotted as follows.
library(ggplot2)
<- coef(fit)[1]
beta0 <- coef(fit)[- 1]
beta <- (beta0 + colMeans(x.s[, - (1:df)]) %*% beta[- (1:df)])[, ]
int.x1 <- (beta0 + colMeans(x.s[, - (1:df + df)]) %*% beta[- (1:df + df)])[, ]
int.x2
ggplot(x = seq(- 1, 1, length.out = 101)) +
stat_function(fun = \(x) sinpi(2 * x), aes(linetype = 'True function')) +
stat_function(fun = \(x) int.x1 + predict(splines[[1]], x) %*% beta[1:df], aes(linetype = 'Fitted function')) +
xlab('x') +
ylab('f(x)')
ggplot(x = seq(- 1, 1, length.out = 101)) +
stat_function(fun = \(x) cospi(2 * x), aes(linetype = 'True function')) +
stat_function(fun = \(x) int.x2 + predict(splines[[2]], x) %*% beta[1:df + df], aes(linetype = 'Fitted function')) +
xlab('x') +
ylab('f(x)')
When modelling interactions between predictors, it is often desirable to enforce the condition that an interaction can be selected only when its constituent predictors are selected, i.e., the coefficient on \(x_1x_2\) can be nonzero only when the coefficients on \(x_1\) and \(x_2\) are nonzero. It is straightforward to enforce this hierarchical constraint using group selection.
In this example, the main effects \(x_1\), \(x_2\), and \(x_3\) are nonzero, as well as the interaction \(x_1x_2\).
<- matrix(rnorm(n * p), n, p)
x <- x[, 1] + x[, 2] + x[, 3] + x[, 1] * x[, 2] + rnorm(n, sd = 0.1)
y
<- model.matrix(~ - 1 + . ^ 2, data = as.data.frame(x))
x.int <- c(1:p, mapply(c, combn(1:p, 2, simplify = F), 1:choose(p, 2) + p, SIMPLIFY = F))
group <- cv.grpsel(x.int, y, group)
fit colnames(x.int)[coef(fit)[- 1] != 0]
#> [1] "V1" "V2" "V3" "V1:V2"
The fitted model respects the hierarchy constraint.