This R package implements the basic financial analysis functions similar to (but not identical to) what is available in most spreadsheet software. This includes finding the IRR and NPV of regularly spaced cash flows and annuities. Bond pricing and YTM calculations are included. In addition, Black Scholes option pricing and Greeks are also provided.
npv(cf=c(100,250,300), rate=5e-2)
npv(cf=c(1,3,2), rate=10e-2, cf.t=c(0.3,1.9,2.5))
irr(c(-600,300,400))
irr(cf=c(-450,100,300,200), cf.t=c(0, 0.3,1.9,2.5))
annuity.pv(rate=10e-2, n.periods=15)
annuity.pv(rate=10e-2, n.periods=15, immediate.start = TRUE)
annuity.pv(rate=10e-2, instalment = 450, n.periods=360, cf.freq=12, comp.freq=2)
annuity.rate(pv=50000, instalment = 450, n.periods=360, cf.freq=12, comp.freq=2)
annuity.instalment(rate=9e-2, pv=10000, n.periods=8)
annuity.instalment.breakup(rate=9e-2, pv=10000, n.periods=8, period.no=5)
bond.price(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
yield=8.8843e-2)
bond.price(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
bond.price(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
yield=8.8843e-2, freq=1, comp.freq=2)
bond.yield(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
price=95)
bond.duration(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
yield=8.8843e-2)
bond.duration(settle="2012-04-15", mature="2022-01-01", coupon=8e-2,
yield=8.8843e-2, modified=TRUE)
coupons.dates(settle="2012-04-15", mature="2022-01-01")
coupons.next(settle="2012-04-15", mature="2022-04-01")
coupons.prev(settle="2012-04-15", mature="2022-04-01")
coupons.n(settle="2012-04-15", mature="2017-07-01")
GenBS(s=100, X=100, r=0.1, Sigma=20e-2, t=1, div_yield=0)
GenBS(s=100, X=120, r=0.1, Sigma=15e-2, t=1, div_yield=5.8e-2)
GenBSImplied(s=100, X=900, r=0, price=7.97, t=1, div_yield=0)
equiv.rate(10e-2, from.freq = 12, to.freq = 2)
equiv.rate(15e-2, from.freq = 1, to.freq = Inf)
edate("2005-05-17", -8)
edate("2007-02-28", 4)
The package implements a Newton Raphson root solver that is used internally to calculate IRR and YTM. It is available for general use.
fn1 <-function(x){list(value=sin(x)-cos(x), gradient=cos(x)+sin(x))}
newton.raphson.root(fn1)
The package implements a bisection root solver that does a geometric
grid search to bracket the root and then calls uniroot
to
find the root within this interval. The package uses the function
internally to calculate IRR and YTM, but bisection.root
is
available for general use.
bisection.root(sin, guess = 7, lower=1, upper=13)
bisection.root(sin, guess = 12, lower=1, upper=13)