Planning a scientific study in psychology entails taking very many decisions. Some of these decisions are taken without thinking about it: for example, given the default to use either Type II (SPSS) or Type III (R) Sums of Squares in Analysis of Variance analyses, users of either package will sometimes follow that default without realising this constitutes an implicit decision. However, ideally, researchers make these decisions deliberately, and ideally, they have justifications for these decisions.
In fact, a recent blog post called upon researchers in psychology to #JustifyEverything:
My new motto is ‘Justify Everything’ (it also works as a hashtag: #JustifyEverything).
And indeed, if researchers would justify all their decisions, this has the potential of yielding a wealth of benefits. First, researchers may become more aware of the decisions they take, enabling them to take those decisons more deliberately. This would decrease the much-lamented unquestioning reliance on defaults in the used software. Second, review of study proposals has the potential to become much more efficient, if the decisions that were taken and their justifications can be extracted and parsed automatically. Third, once justifing everything becomes common practice, analysing these decisions and their justifications can be very insightful, for example showing where training of researchers may be most beneficial (i.e. areas where decisions and their justifications are based on outdated assumptions). Fourth, documenting decisions and justifications means that a lot of aspects of a study’s methods and analyses are necessarily documented in a machine-readable way. This means that when conducting evidence syntheses, the information can be automatically extracted, and no longer needs to be coded from the manuscript.
However, for this potential to be realised, justifications need to be
documented in a uniform format. Ideally, this is a format that is
simultaneously userfriendly enough to be used by humans as they document
their meeting minutes or notes, and structured enough to be
machine-readable so as to enable automatic extraction and parsing. The
justifier
package provides this format. The basic
introduction of justifier
is in the general introduction
vignette, and this vignette presents a simple example using a
justification framework for planning psychological studies.1
In this example framework, we will limit ourselves to four decisions that a researcher always takes for any study they undertake. The first is to establish the research question or questions, or if appropriate, hypothesis or hypothesis. The second is to determine which method wil be used. The third is deciding how many data points need to be sampled (for example, how many participants will be recruited). The fourth is whether to preregister the study.2
The example study is an applied study into the social-cognitive determinants of getting one’s ecstasy pills tested. In the Netherlands, there are drug test labs where one can bring drugs to anonymously get those tested and find out the ingredients and their dose. Ectasy pills ideally contain only one active ingredient: 3,4-methylenedioxymethamphetamin (MDMA). However, pills can contains varying doses of MDMA (in 2017, the mean MDMA dose was 187mg of MDMA; 1% of the pills had a dose under 35mg of MDMA and 70% over 140mg of MDMA). In addition, pills can contain contaminants (in 2017, 87.6% of the pills tested in the Netherlands contained only MDMA as active ingrdient).
This example is chosen for two reasons. First, it’s my topic, so this way I don’t have to learn about another domain to write it. Second, it’s the same example as the one used in the intervention development vignette, so that readers won’t have to familiarize themselves with two scenarios.
The first decision is in a way the simplest one: what exactly does one want to study? However, this research question isn’t arbitrary. In this world of finite, often scarce, resources, justification of why to do a study in the first place is perhaps one of the most important considerations.
In this applied example study, the research question is
"What are the most important determinants of getting one's ecstasy tested?"
.
The answer to this research question is required to develop and
effective interventions to promote ecstasy pill testing. It is important
to promote ecstasy pill testing because if ecstasy users do not get
their pills tested, they are exposed to two risks. First, they may
unknowingly ingest contaminants; and second, proper dosing (~ 1-1.5 mg
of MDMA per kg of body weight) becomes hard if the dose in a pill is
unknown. To minimize the likelihood of incidents and accidental
intoxication, testing is a required step.
Often, the appropriate method follows from a combination of the type of research question and knowledge about the relevant domain. Some research questions require qualitative research; some quantitative research; and some are best answered by research synthesis. However, within each of these, many choices have to be made. To name a few examples, for qualitative research, which analysis approach is most appropriate and how to sample participants; for quantitative research, whether to use an experimental design or not and which operationalisations to use; and for a research syntesis, which bibliographic databases to use and whether to extract effect size esimates.
In the example study, there are two kinds of considerations. On the one hand, logistical considerations (available time and money. On the other hand, available prior knowledge from earlier research. On the one hand, one needs to know enough about potential determinants and sub-determinants to develop a sufficiently comprehensive questionnaire. On the other hand, one can keep doing qualitative studies and learning a little bit more ad infinitum, while in reality, one often has to work with (severely) limited funds and time.
Once the method is clear, for empirical research, it becomes possible to plan the required sample size. For example, in this example study, we aim to map the importance of a series of behavioral determinants to then inform intervention development. That means we desire sufficiently accurate estimates of determinants’ relevance. To obtain a confidence interval with a half-width of around .1, 400 participants suffice (Moinester & Gottfried, 2014).
Preregistation is an excellent example of a decision that is taken for every single study, yet often without the researchers’ awareness. As with any decision taken during study planning, there are no absolute ‘right’ or ‘wrong’ answers: the justification of the decision is often more important than the outcome.
justifier
formatIn this section, the decisions explained above are shows in the
justifier
format.
In one of the ‘justified markdown’ files, for example meeting minutes, researchers would specify the framework to use. In this case, this specification would look like this:
---
:
justifier-
: global # Can also be local or universal
scope: justifier-example-study-framework-specification.jmd
framework-
: local
scope: 2019-03-06
date---
This justifier fragment contains two bits of metadata, the first
applying to all files in this directory (scope: global
) and
the second only to this file (scope: local
;
scope: universal
could have been used to apply the metadata
to all files read by justifier
in a given project). The
first fragment specifies the framework to apply
(justifier-example-study-framework-specification.jmd
). This
framework contains information about contexts
of decisions
and conditions
that can apply to decisions, justifications,
assertions, and sources.
---
:
decision
### Type and decision can be the same, but it is also possible that there
### are multiple decisions of the same type, for example relating to different
### aspects of sample size planning or selection of operationalisations.
: research_question
type: research_question
id
### The value is the decision that is taken (the chosen alternative). For decisions
### with a type, this will be checked against the allowed values specified in the
### justifier framework, if such a framework is available.
: "What are the most important determinants of getting one's ecstasy tested?"
value
### The label and description are human-readable free-text fields.
: "The answer to this research question is required to develop and effective interventions to promote ecstasy pill testing."
label: "To minimize the likelihood of incidents and accidental intoxication, testing is a required step."
description
:
justification-
: without_testing_users_may_ingest_contaminants
id: "Some XTC pills are contaminated, and one needs to test them to be aware of the pill contents."
label:
assertion-
: some_pills_are_contaminated
id: vogels_2009
source: "Not all produced XTC pills contain only MDMA as active ingredient."
label: "empirical study"
evidence_type-
: proper_dosing_requires_knowing_dose
id: "Proper dosing (~ 1-1.5 mg of MDMA per kg of body weight) becomes hard if the dose in a pill is unknown."
label:
assertion: dosing_requires_pill_content
id: "Determining the dose of MDMA one uses requires knowing both one's body weight and the pill dose."
label:
source: brunt_2012
id: "Brunt, Koeter, Niesink & van den Brink (2012)"
label: "empirical study"
evidence_type---
---
:
decision
### Type and decision can be the same, but it is also possible that there
### are multiple decisions of the same type, for example relating to different
### aspects of sample size planning or selection of operationalisations.
: global_study_method
type: global_study_method
id
### The value is the decision that is taken (the chosen alternative). For decisions
### with a type, this will be checked against the allowed values specified in the
### justifier framework, if such a framework is available.
: quantitative
value
### The label and description are human-readable free-text fields.
: "We will conduct a quantitative study."
label: "Here, a decision can be explained more in detail (e.g. describing how the justifications relate to each other)."
description
:
justification-
: enough_known_about_testing_determinants
id: "We have enough information available to develop a questionnaire that is likely to measure the most important determinants and sub-determinants of XTC testing."
label:
assertion-
: testing_xtc_is_reasoned
id: phd_peters_2008
source: "Previous research indicates that getting one's ecstasy tested (or not) is largely a reasoned behavior"
label-
: there_is_qualitative_research_about_testing
id: phd_peters_2008
source: "There exists qualitative research about why people get their ecstasy tested"
label-
: limited_time
id: "We have to finish this study before the end of 2019."
label:
assertion-
: project_deadline
id: "The deadline for this project is december 2019."
label:
source: project_proposal
id: "The original proposal for this project as funded by our funder, see the document."
label: 2017
year---
---
:
decision: study_sample_size
id: study_sample_size
type
: 400
value
: "We aim to recruit around 400 participants."
label
:
justification-
: aipe_for_correlations
id: "To estimate a correlation accurately, you need ~ 400 participants."
label:
assertion-
: nice_round_number
id: "We want to recruit a nice round number of participants."
label:
source: nice_round_numbers_are_nice
id: 219
year: "In our meeting of 2019-07-05, we agreed that all team members like nice round numbers."
label: "team opinion"
evidence_type-
: exact_aipe_for_our_study
id: "Table 1 shows that 383 participants are sufficient even for correlations as low as .05."
label:
source: moinester_gottfried_2014
id: 2014
year: "Moinester, M., & Gottfried, R. (2014). Sample size estimation for correlations with pre-specified confidence interval. The Quantitative Methods of Psychology, 10(2), 124–130."
label: "theory"
evidence_type---
---
:
decision: preregistration
id: preregistration
type
: false
value
: "We will not preregister this study."
label
:
justification-
: low_risk_of_bias
id: "Because we do not test a specific hypothesis but simply want to know how relevant the different determinants are in this population, the need to preregister is less pressing."
label:
assertion-
: prereg_to_decrease_bias
id: "Preregistration_decreases_bias"
label:
source: example_source
id: "Not online now, but a study making this point would be nice here"
label: "empirical study"
evidence_type-
: no_time_for_prereg
id: "We have no time to complete a preregistration form."
label:
assertion: project_deadline
id---
justifier
processingThis vignette itself is a valid .jmd
file (see here
for the vignette Rmd file and here
for the example .jmd file; the content is identical). It can be read by
justifier
, as is, to structure the information and apply
the framework. If this framework specifies, for example (which this
example framework happens to specify), that there exist different
evidence types (a new field for source
elements, as
specified in the framework), and that each can be awarded a score based
on some idea of evidential quality, it becomes possible to compute the
mean score per decision. Because this vignette is contained within the
package in the extdata
directory as well, it can be read
and processed here. Since justifier
frameworks can also
contain specifications of ways to verify the entered data, it will
immediately spot the typo we made:
<- file.path(system.file(package="justifier"), 'extdata');
examplePath
<-
res ::load_justifications(file=file.path(examplePath,
justifier"study-example.jmd"),
silent=TRUE);
#>
#>
#> Not all specifications of decisions, justifications, assertions, and sources successfully passed all verifications for framework '':
#>
#> - In the source with identifier `nice_round_numbers_are_nice`, when applying a verification in framework condition `source_year`, it failed with message: "The year you specify in a source must consist of exactly four digits.".
#>
#>
#> All specifications of decisions, justifications, assertions, and sources successfully passed all verifications for framework ''.
#>
#> All specifications of decisions, justifications, assertions, and sources successfully passed all verifications for framework ''.
Having successfully read the justifications, we can now show the mean score for every decision:
::kable(res$fwApplications$`justifier-example-study-framework-specification`$scoreDf); knitr
|| || || ||
We can also show overviews of each decision and its justifications:
plot(res$decisionGraphs$research_question);
plot(res$decisionGraphs$study_sample_size);
Note that this framework is intended as an example, not as an authoritative framework that should be relied on in the wild.↩︎
Again, this is a gross oversimplification; these are not the most important decisions, but they have been chosen because they cover different kinds of decisions, with different kinds of evidence available.↩︎