lsm()
When the values of the outcome variable Y are either 0 or 1, the function calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. If is dichotomous and the data are grouped in J populations, it is recommended to use the function because it works very well for all .
The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).
install.packages("lsm")
library(lsm)
Hosmer, D. (2013) page 3: Age and coranary Heart Disease (CHD) Status of 20 subjects:
library(lsm)
AGE <- c(20,23,24,25,25,26,26,28,28,29,30,30,30,30,30,30,30,32,33,33)
CHD <- c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)
data <- data.frame (CHD, AGE )
lsm(CHD ~ AGE , family=binomial, data)
## For more ease, use the following notation.
lsm(y~., data)
# Other case.
y <- c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1)
x1 <- c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11)
data <- data.frame (y, x1)
ELAINYS <-lsm(y ~ x1, family=binomial, data)
summary(ELAINYS)
# Other case.
y <- as.factor(c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1))
x1 <- as.factor(c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11))
data <- data.frame (y, x1)
ELAINYS1 <-lsm(y ~ x1, family=binomial, data)
confint(ELAINYS1)
[1] Humberto Jesus Llinas. (2006). Accuracies in the theory of the logistic models. Revista Colombiana De Estadistica,29(2), 242-244.
[2] Hosmer, D. (2013). Wiley Series in Probability and Statistics Ser. : Applied Logistic Regression (3). New York: John Wiley & Sons, Incorporated.
[3] Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.
Humberto Llinas Solano [aut], Universidad del Norte, Barranquilla-Colombia \ Omar Fabregas Cera [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Villalba Acevedo [cre, aut], Universidad Tecnológica de Bolívar, Cartagena-Colombia.
If you found any ERRORS or have SUGGESTIONS, please report them to my email. Thanks.