This vignette introduces two functions, calc_lag_fit_to_logistic_with_lag and calc_lag_fit_to_baranyi_with_lag, which are used to calculate lag values for Logistic and Baranyi growth models, respectively.
The calc_lag_fit_to_logistic_with_lag function runs the nlsLM/nls algorithm of the user’s choice to fit the Logistic growth model parameters to data. It calculates the lag parameter and returns the result along with the nls fitting object.
The function takes the following parameters:
Examples
# Load required libraries
library(dplyr)
# Generate example growth curve data
set.seed(123)
time <- 1:10
biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0)
gr_curve <- data.frame(time = time, biomass = biomass)
# Calculate lag for the Logistic model
lag_result <- calc_lag_fit_to_logistic_with_lag(gr_curve, n0 = 0.1, init_gr_rate = 0.5, init_K = 30, init_lag = 0.5)
# Print the calculated lag
lag_result$lag_N
The calc_lag_fit_to_baranyi_with_lag function runs nlsLM/nls algorithms to fit the Baranyi growth model parameters to data. It calculates the lag parameter and returns the result along with the nls fitting object.
The function takes the following parameters:
# Load required libraries
library(dplyr)
# Generate example growth curve data
set.seed(123)
time <- 1:10
biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0)
gr_curve <- data.frame(time = time, biomass = biomass)
# Calculate lag for the Baranyi model
lag_result <- calc_lag_fit_to_baranyi_with_lag(gr_curve, LOG10N0 = NULL, init_lag = NULL, init_mumax = NULL, init_LOG10Nmax = NULL, algorithm = "auto")
# Print the calculated lag
lag_result$lag_N
These functions are useful for calculating lag values for Logistic and Baranyi growth models based on the provided data. The calculated lag can be used for further analysis and modeling of bacterial growth curves.