Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.
Version: | 2.1.1 |
Depends: | sgeostat, R (≥ 3.1) |
Imports: | robustbase |
Published: | 2021-07-30 |
DOI: | 10.32614/CRAN.package.mvoutlier |
Author: | Peter Filzmoser and Moritz Gschwandtner |
Maintainer: | P. Filzmoser <P.Filzmoser at tuwien.ac.at> |
License: | GPL (≥ 3) |
URL: | http://cstat.tuwien.ac.at/filz/ |
NeedsCompilation: | no |
In views: | Robust |
CRAN checks: | mvoutlier results |
Reference manual: | mvoutlier.pdf |
Package source: | mvoutlier_2.1.1.tar.gz |
Windows binaries: | r-devel: mvoutlier_2.1.1.zip, r-release: mvoutlier_2.1.1.zip, r-oldrel: mvoutlier_2.1.1.zip |
macOS binaries: | r-release (arm64): mvoutlier_2.1.1.tgz, r-oldrel (arm64): mvoutlier_2.1.1.tgz, r-release (x86_64): mvoutlier_2.1.1.tgz, r-oldrel (x86_64): mvoutlier_2.1.1.tgz |
Old sources: | mvoutlier archive |
Reverse imports: | cellity, GateFinder |
Reverse suggests: | ChemoSpecUtils, fPortfolio, GWmodel, mplot, shotGroups |
Reverse enhances: | cluster |
Please use the canonical form https://CRAN.R-project.org/package=mvoutlier to link to this page.