Paired Mass Distance(PMD) analysis for GC/LC-MS based non-targeted analysis

Miao Yu

2021-01-21

Introduction of Paired Mass Distance analysis

pmd package use Paired Mass Distance (PMD) relationship to analysis the GC/LC-MS based non-targeted data. PMD means the distance between two masses or mass to charge ratios. In mass spectrometry, PMD would keep the same value between two masses and two mass to charge ratios(m/z). There are two kinds of PMD involved in this package: PMD from the same compound and PMD from different compounds. In GC/LC-MS or XCMS based non-targeted data analysis, peaks could be separated by chronograph and same compound means ions from similar retention times or ions co-eluted by certain column.

PMD from the same compound

For MS1 full scan data, we could build retention time(RT) bins to assign peaks into different RT groups by retention time hierarchical clustering analysis. For each RT group, the peaks should come from same compounds or co-elutes. If certain PMD appeared in multiple RT groups, it would be related to the relationship about adducts, neutral loss, isotopologues or common fragments ions.

PMD from different compounds

The peaks from different retention time groups would like to be different compounds separated by chronograph. The PMD would reflect the relationship about homologous series or chemical reactions.

GlobalStd algorithm use the PMD within same RT group to find independent peaks among certain data set. Then, structure/reaction directed analysis use PMD from different RT groups to screen important compounds or reactions.

Data format

The input data should be a list object with at least two elements from a peaks list:

However, I suggested to add intensity and group information to the list for validation of PMD analysis.

In this package, a data set from in vivo solid phase micro-extraction(SPME) was attached. This data set contain 9 samples from 3 fish with triplicates samples for each fish. Here is the data structure:

library(pmd)
data("spmeinvivo")
str(spmeinvivo)
#> List of 4
#>  $ data : num [1:1459, 1:9] 1095 10439 10154 2797 90211 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:1459] "100.1/170" "100.5/86" "101/85" "103.1/348" ...
#>   .. ..$ : chr [1:9] "1405_Fish1_F1" "1405_Fish1_F2" "1405_Fish1_F3" "1405_Fish2_F1" ...
#>  $ group:'data.frame':   9 obs. of  2 variables:
#>   ..$ sample_name : chr [1:9] "1405_Fish1_F1" "1405_Fish1_F2" "1405_Fish1_F3" "1405_Fish2_F1" ...
#>   ..$ sample_group: chr [1:9] "fish1" "fish1" "fish1" "fish2" ...
#>  $ mz   : num [1:1459] 100 101 101 103 104 ...
#>  $ rt   : num [1:1459] 170.2 86.3 84.9 348.1 48.8 ...

You could build this list or mzrt object from the xcms objects via enviGCMS package. When you have a xcmsSet object or XCMSnExp object named xset, you could use enviGCMS::getmzrt(xset) to get such list. Of course you could build such list by yourself.

GlobalStd algorithm

GlobalStd algorithm try to find independent peaks among certain peaks list. The first step is retention time hierarchical clustering analysis. The second step is to find the relationship among adducts, neutral loss, isotopologues and common fragments ions. The third step is to screen the independent peaks.

Here is a workflow for this algorithm:

knitr::include_graphics('https://yufree.github.io/presentation/figure/GlobalStd.png')

STEP1: Retention time hierarchical clustering

pmd <- getpaired(spmeinvivo)
#> 75 retention time cluster found.
#> 369 paired masses found
#> 5 unique within RT clusters high frequency PMD(s) used for further investigation.
#> The unique within RT clusters high frequency PMD(s) is(are)  28.03 21.98 44.03 17.03 18.01.
#> 719 isotopologue(s) related paired mass found.
#> 492 multi-charger(s) related paired mass found.
plotrtg(pmd)

This plot would show the distribution of RT groups. The rtcutoff in function getpaired could be used to set the cutoff of the distances in retention time hierarchical clustering analysis. Retention time cluster cutoff should fit the peak picking algorithm. For HPLC, 10 is suggested and 5 could be used for UPLC.

Global PMD’s retention time group numbers should be around 20 percent of the retention time cluster numbers. For example, if you find 100 retention time clusters, I suggested you use 20 as the cutoff of empirical global PMD’s retention time group numbers. If you don’t specificlly assign a value to ng, the algorithm will select such recommendation by default setting.

Take care of the retention time cluster with lots of peaks. In this case, such cluster could be co-eluted compounds on certain column. It would be wise to trim the retention time window for high quality peaks. Another important hint is that pre-filter your peak list by black samples or other quality control samples. Otherwise the running time would be long and lots of pmd relationship would be just from noise.

STEP2: Relationship among adducts, neutral loss, isotopologues and common fragments ions

The ng in function getpaired could be used to set cutoff of global PMD’s retention time group numbers. If ng is 10, at least 10 of the retention time groups should contain the shown PMD relationship. You could use plotpaired to show the distribution.

plotpaired(pmd)

You could also show the distribution of PMD relationship by index:

# show the unique PMD found by getpaired function
for(i in 1:length(unique(pmd$paired$diff2))){
        diff <- unique(pmd$paired$diff2)[i]
        index <- pmd$paired$diff2 == diff
        plotpaired(pmd,index)
}

This is an easy way to find potential adducts of the data by high frequency PMD from the same compound. For example, 21.98 Da could be the mass distances between \([M+H]^+\) and \([M+Na]^+\). In this case, user could find the potential adducts or neutral loss even when they have no preferred adducts list. If one adduct exist in certain analytical system, the high frequency PMD will reveal such relationship. The high frequency PMD list could also be used to check the fragmental pattern of in-source reactions as long as such patterns are popular among all collected ions.

STEP3: Screen the independent peaks

You could use getstd function to get the independent peaks. Independent peaks mean the peaks list removing the redundant peaks such as adducts, neutral loss, isotopologues and comment fragments ions found by PMD analysis in STEP2. Ideally, those peaks could be molecular ions while they might still contain redundant peaks.

std <- getstd(pmd)
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 11 group(s) with multiple peaks while no isotope/paired relationship 4 5 7 8 11 41 42 49 68 72 73
#> 9 group(s) with multiple peaks with isotope without paired relationship 2 9 22 26 52 62 64 66 70
#> 4 group(s) with paired relationship without isotope 1 10 15 18
#> 43 group(s) with paired relationship and isotope 3 6 12 13 16 17 19 20 21 24 25 27 28 29 30 31 34 35 36 37 38 39 40 43 44 45 46 47 48 50 51 53 57 58 59 60 61 63 65 67 69 71 74
#> 291 std mass found.

Here you could plot the peaks by plotstd function to show the distribution of independent peaks:

plotstd(std)

You could also plot the peaks distribution by assign a retention time group via plotstdrt:

par(mfrow = c(2,3))
plotstdrt(std,rtcluster = 23,main = 'Retention time group 23')
plotstdrt(std,rtcluster = 9,main = 'Retention time group 9')
plotstdrt(std,rtcluster = 18,main = 'Retention time group 18')
plotstdrt(std,rtcluster = 67,main = 'Retention time group 67')
plotstdrt(std,rtcluster = 49,main = 'Retention time group 49')
plotstdrt(std,rtcluster = 6,main = 'Retention time group 6')

Extra filter with correlation coefficient cutoff

Original GlobalStd algorithm only use mass to charge ratio and retention time of peaks to select independent peaks. However, if intensity data across samples are available, correlation coefficient of paired ions could be used to further filter the random noise in high frequency PMDs. You could set up cutoff of Pearson Correlation Coefficient between peaks to refine the peaks selected by GlobalStd within same retention time groups. In this case, the numbers of selected independent peaks will be further reduced. When you use this parameter, make sure the intensity data are from real samples instead of blank samples, which will affect the calculation of correlation coefficient.

std2 <- getstd(pmd,corcutoff = 0.9)
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 23 group(s) with multiple peaks while no isotope/paired relationship 2 4 5 7 8 10 11 15 18 26 35 39 41 42 49 50 59 62 68 69 70 72 73
#> 14 group(s) with multiple peaks with isotope without paired relationship 9 12 22 24 27 28 34 51 52 57 60 64 66 71
#> 3 group(s) with paired relationship without isotope 1 53 74
#> 27 group(s) with paired relationship and isotope 3 6 13 16 17 19 20 21 25 29 30 31 36 37 38 40 43 44 45 46 47 48 58 61 63 65 67
#> 120 std mass found.

Validation by principal components analysis(PCA)

You need to check the GlobalStd algorithm’s results by principal components analysis(PCA). If we removed too much peaks containing information, the score plot of reduced data set would show great changes.

library(enviGCMS)
par(mfrow = c(2,2),mar = c(4,4,2,1)+0.1)
plotpca(std$data,lv = as.numeric(as.factor(std$group$sample_group)),main = "all peaks")
plotpca(std$data[std$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std$stdmassindex),"independent peaks"))
plotpca(std2$data[std2$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std2$stdmassindex),"reduced independent peaks"))

You might find original GlobalStd algorithm show a similar PCA score plot with original data while GlobalStd algorithm considering intensity data seems change the profile. The major reason is that correlation coefficient option in the algorithm will remove the paired ions without strong correlation. It will be aggressive to remove low intensity peaks, which are vulnerable by baseline noise. However, such options would be helpful if you only concern high quanlity peaks for following analysis. Otherwise, original GlobalStd will keep the most information for explorer purpose.

Comparison with other pseudo spectra extraction method

GlobalStd algorithm in pmd package could be treated as a method to extract pseudo spectra. You could use getcluster to get peaks groups information for all GlobalStd peaks. This function would consider the merge of GlobalStd peaks when certain peak is involved in multiple clusters. Then you could choose export peaks with the highest intensities or base peaks in each GlobalStd merged peaks groups. Meanwhile, you could also include the correlation coefficient cutoff to further improve the data quality.

stdcluster <- getcluster(std)
# extract pseudospectra for std peak 71
idx <- unique(stdcluster$cluster$largei[stdcluster$cluster$i==71])
plot(stdcluster$cluster$mz[stdcluster$cluster$largei==idx],stdcluster$cluster$ins[stdcluster$cluster$largei==idx],type = 'h',xlab = 'm/z',ylab = 'intensity',main = 'pseudo spectra for GlobalStd peak 71')

# export peaks with the highest intensities in each GlobalStd peaks groups.
data <- stdcluster$data[stdcluster$stdmassindex2,]
# considering the correlation coefficient cutoff
stdcluster2 <- getcluster(std, corcutoff = 0.9)
# considering the correlation coefficient cutoff for both psedospectra extraction and GlobalStd algorithm
stdcluster3 <- getcluster(std2, corcutoff = 0.9)

We supplied getcorcluster to find peaks groups by correlation analysis only. The base peaks of correlation cluster were selected to stand for the compounds.

corcluster <- getcorcluster(spmeinvivo)
#> 75 retention time cluster found.
# extract pseudospectra 1@46
peak <- corcluster$cluster[corcluster$cluster$largei == '1@46',]
plot(peak$ins~peak$mz,type = 'h',xlab = 'm/z',ylab = 'intensity',main = 'pseudo spectra for correlation cluster')

Then we could compare the compare reduced result using PCA similarity factor. A good peak selection algorithm could show a high PCA similarity factor compared with original data set while retain the minimized number of peaks.

par(mfrow = c(3,3),mar = c(4,4,2,1)+0.1)
plotpca(std$data[std$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std$stdmassindex),"independent peaks"))
plotpca(std$data[stdcluster$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster$stdmassindex2),"independent base peaks"))
plotpca(std$data[stdcluster2$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster2$stdmassindex2),"independent reduced base peaks"))
plotpca(std$data[corcluster$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(corcluster$stdmassindex),"peaks without correlationship"))
plotpca(std$data[corcluster$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(corcluster$stdmassindex2),"base peaks without correlationship"))
plotpca(std$data,lv = as.numeric(as.factor(std$group$sample_group)),main = paste(nrow(std$data),"all peaks"))
plotpca(std$data[stdcluster3$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster3$stdmassindex2),"reduced independent base peaks"))
pcasf(std$data, std$data[std$stdmassindex,])
#>     pcasf 
#> 0.9993497
pcasf(std$data, std$data[stdcluster$stdmassindex2,])
#>     pcasf 
#> 0.9993578
pcasf(std$data, std$data[stdcluster2$stdmassindex2,])
#>    pcasf 
#> 0.999346
pcasf(std$data, std$data[corcluster$stdmassindex,])
#>     pcasf 
#> 0.9471586
pcasf(std$data, std$data[corcluster$stdmassindex2,])
#>     pcasf 
#> 0.9497193
pcasf(std$data, std$data[stdcluster3$stdmassindex2,])
#>    pcasf 
#> 0.713527

In this case, five peaks selection algorithms are fine to stand for the original peaks with PCA similarity score larger than 0.9. However, the independent base peaks retain the most information with relative low numbers of peaks.

Structure/Reaction directed analysis

getsda function could be used to perform Structure/reaction directed analysis. The cutoff of frequency is automate found by PMD network analysis with the largest mean distance of all nodes.

sda <- getsda(std)
#> PMD frequency cutoff is 6 by PMD network analysis with largest network average distance 6.67 .
#> 53 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 1.98 was found as high frequency PMD. 
#> 2.01 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 6.97 was found as high frequency PMD. 
#> 11.96 was found as high frequency PMD. 
#> 12 was found as high frequency PMD. 
#> 13.98 was found as high frequency PMD. 
#> 14.02 was found as high frequency PMD. 
#> 14.05 was found as high frequency PMD. 
#> 15.99 was found as high frequency PMD. 
#> 16.03 was found as high frequency PMD. 
#> 19.04 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 30.05 was found as high frequency PMD. 
#> 31.99 was found as high frequency PMD. 
#> 33.02 was found as high frequency PMD. 
#> 37.02 was found as high frequency PMD. 
#> 42.05 was found as high frequency PMD. 
#> 48.04 was found as high frequency PMD. 
#> 48.98 was found as high frequency PMD. 
#> 49.02 was found as high frequency PMD. 
#> 54.05 was found as high frequency PMD. 
#> 56.06 was found as high frequency PMD. 
#> 56.1 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 58.08 was found as high frequency PMD. 
#> 58.11 was found as high frequency PMD. 
#> 63.96 was found as high frequency PMD. 
#> 66.05 was found as high frequency PMD. 
#> 68.06 was found as high frequency PMD. 
#> 70.04 was found as high frequency PMD. 
#> 70.08 was found as high frequency PMD. 
#> 74.02 was found as high frequency PMD. 
#> 80.03 was found as high frequency PMD. 
#> 82.08 was found as high frequency PMD. 
#> 88.05 was found as high frequency PMD. 
#> 91.1 was found as high frequency PMD. 
#> 93.12 was found as high frequency PMD. 
#> 94.1 was found as high frequency PMD. 
#> 96.09 was found as high frequency PMD. 
#> 101.05 was found as high frequency PMD. 
#> 108.13 was found as high frequency PMD. 
#> 110.11 was found as high frequency PMD. 
#> 112.16 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD. 
#> 122.15 was found as high frequency PMD. 
#> 124.16 was found as high frequency PMD. 
#> 126.14 was found as high frequency PMD. 
#> 144.18 was found as high frequency PMD. 
#> 148.04 was found as high frequency PMD. 
#> 150.2 was found as high frequency PMD. 
#> 173.18 was found as high frequency PMD.

Such largest mean distance of all nodes is calculated for top 1 to 100 (if possible) high frequency PMDs. Here is a demo for the network generation process.

library(igraph)
#> 
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#> 
#>     decompose, spectrum
#> The following object is masked from 'package:base':
#> 
#>     union
cdf <- sda$sda
# get the PMDs and frequency
pmds <- as.numeric(names(sort(table(cdf$diff2),decreasing = T)))
freq <- sort(table(cdf$diff2),decreasing = T)
# filter the frequency larger than 10 for demo
pmds <- pmds[freq>10]
cdf <- sda$sda[sda$sda$diff2 %in% pmds,]
g <- igraph::graph_from_data_frame(cdf,directed = F)
l <- igraph::layout_with_fr(g)
for(i in 1:length(pmds)){
  g2 <- igraph::delete_edges(g,which(E(g)$diff2%in%pmds[1:i]))
  plot(g2,edge.width=1,vertex.label="",vertex.size=1,layout=l,main=paste('Top',length(pmds)-i,'high frequency PMDs'))
}

Here we could find more and more compounds will be connected with more high frequency PMDs. Meanwhile, the mean distance of all network nodes will increase. However, some PMDs are generated by random combination of ions. In this case, if we included those PMDs for the network, the mean distance of all network nodes will decrease. Here, the largest mean distance means no more information will be found for certain data set and such value is used as the cutoff for high frequency PMDs selection.

You could use plotstdsda to show the distribution of the selected paired peaks.

plotstdsda(sda)

You could also use index to show the distribution of certain PMDs.

par(mfrow = c(1,3),mar = c(4,4,2,1)+0.1)
plotstdsda(sda,sda$sda$diff2 == 2.02)
plotstdsda(sda,sda$sda$diff2 == 28.03)
plotstdsda(sda,sda$sda$diff2 == 58.04)

Structure/reaction directed analysis could be directly performed on all the peaks, which is slow to process:

sdaall <- getsda(spmeinvivo)
#> PMD frequency cutoff is 104 by PMD network analysis with largest network average distance 14.06 .
#> 6 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 31.01 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD.
par(mfrow = c(1,3),mar = c(4,4,2,1)+0.1)
plotstdsda(sdaall,sdaall$sda$diff2 == 2.02)
plotstdsda(sdaall,sdaall$sda$diff2 == 28.03)
plotstdsda(sdaall,sdaall$sda$diff2 == 58.04)

Extra filter with correlation coefficient cutoff

Structure/Reaction directed analysis could also use correlation to restrict the paired ions. However, similar to GlobalStd algorithm, such cutoff will remove low intensity data. Researcher should have a clear idea to use this cutoff.

sda2 <- getsda(std, corcutoff = 0.9)
#> PMD frequency cutoff is 6 by PMD network analysis with largest network average distance 6.67 .
#> 41 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 1.98 was found as high frequency PMD. 
#> 2.01 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 11.96 was found as high frequency PMD. 
#> 12 was found as high frequency PMD. 
#> 13.98 was found as high frequency PMD. 
#> 14.02 was found as high frequency PMD. 
#> 14.05 was found as high frequency PMD. 
#> 15.99 was found as high frequency PMD. 
#> 16.03 was found as high frequency PMD. 
#> 19.04 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 30.05 was found as high frequency PMD. 
#> 31.99 was found as high frequency PMD. 
#> 33.02 was found as high frequency PMD. 
#> 42.05 was found as high frequency PMD. 
#> 48.98 was found as high frequency PMD. 
#> 49.02 was found as high frequency PMD. 
#> 54.05 was found as high frequency PMD. 
#> 56.06 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 58.08 was found as high frequency PMD. 
#> 63.96 was found as high frequency PMD. 
#> 66.05 was found as high frequency PMD. 
#> 68.06 was found as high frequency PMD. 
#> 70.08 was found as high frequency PMD. 
#> 74.02 was found as high frequency PMD. 
#> 80.03 was found as high frequency PMD. 
#> 82.08 was found as high frequency PMD. 
#> 88.05 was found as high frequency PMD. 
#> 93.12 was found as high frequency PMD. 
#> 94.1 was found as high frequency PMD. 
#> 96.09 was found as high frequency PMD. 
#> 108.13 was found as high frequency PMD. 
#> 110.11 was found as high frequency PMD. 
#> 112.16 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD. 
#> 122.15 was found as high frequency PMD. 
#> 124.16 was found as high frequency PMD. 
#> 126.14 was found as high frequency PMD.
plotstdsda(sda2)

Structure/reaction directed analysis for peaks/compounds only data

When you only have data of peaks without retention time or compounds list, structure/reaction directed analysis could also be done by getrda function.

sda <- getrda(spmeinvivo$mz[std$stdmassindex])
#> 36668 pmd found.
#> 3 pmd used.

Wrap function for GlobalStd algorithm

globalstd function is a wrap function to process GlobalStd algorithm and structure/reaction directed analysis in one line. All the plot function could be directly used on the list objects from globalstd function. If you want to perform structure/reaction directed analysis, set the sda=T in the globalstd function.

result <- globalstd(spmeinvivo, sda=FALSE)
#> 75 retention time cluster found.
#> 369 paired masses found
#> 5 unique within RT clusters high frequency PMD(s) used for further investigation.
#> The unique within RT clusters high frequency PMD(s) is(are)  28.03 21.98 44.03 17.03 18.01.
#> 719 isotopologue(s) related paired mass found.
#> 492 multi-charger(s) related paired mass found.
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 11 group(s) with multiple peaks while no isotope/paired relationship 4 5 7 8 11 41 42 49 68 72 73
#> 9 group(s) with multiple peaks with isotope without paired relationship 2 9 22 26 52 62 64 66 70
#> 4 group(s) with paired relationship without isotope 1 10 15 18
#> 43 group(s) with paired relationship and isotope 3 6 12 13 16 17 19 20 21 24 25 27 28 29 30 31 34 35 36 37 38 39 40 43 44 45 46 47 48 50 51 53 57 58 59 60 61 63 65 67 69 71 74
#> 291 std mass found.

Use independent peaks for MS/MS validation (PMDDA)

Independent peaks are supposing generated from different compounds. We could use those peaks for MS/MS analysis instead of DIA or DDA. Here we need multiple injections for one sample since it might be impossible to get all ions’ fragmental ions in one injection with good sensitivity. You could use gettarget to generate the index for the injections and output the peaks for each run.

# you need retention time for independent peaks
index <- gettarget(std$rt[std$stdmassindex])
#> You need 10 injections!
# output the ions for each injection
table(index)
#> index
#>  1  2  3  4  5  6  7  8  9 10 
#> 25 16 33 22 32 28 46 34 29 26
# show the ions for the first injection
std$mz[index==1]
#>   [1] 100.5107 112.0183 115.9640 118.0652 132.0779 137.0472 137.9885 149.9530
#>   [9] 155.1293 155.1295 167.0709 170.0330 170.0932 174.9383 176.0305 181.9872
#>  [17] 192.1380 195.1138 197.1285 198.1852 228.1973 236.9406 239.1490 245.1944
#>  [25] 251.2385 261.2591 265.4216 267.1772 267.9535 270.3185 270.3185 270.3185
#>  [33] 273.8902 277.1815 277.1896 286.3101 288.2546 291.0712 296.9066 301.1419
#>  [41] 305.2480 309.2046 311.2560 313.1439 313.3297 337.3298 341.0180 341.3512
#>  [49] 353.3603 358.2640 367.9923 372.3197 375.2147 376.3179 383.2052 385.2926
#>  [57] 386.2783 394.8754 399.1231 399.3274 413.2660 416.0377 416.3062 420.3193
#>  [65] 424.8970 429.3692 432.9177 440.8696 442.3373 444.3844 485.2901 494.8114
#>  [73] 498.9017 514.8764 521.1371 538.1637 541.3942 543.1198 543.4015 556.4416
#>  [81] 559.4247 560.2188 567.1783 568.8923 570.2830 593.1578 596.1559 598.8366
#>  [89] 605.2231 608.8745 617.4657 630.7621 638.3081 640.1961 642.1942 680.4633
#>  [97] 692.4941 695.5039 707.8415 711.3532 736.4916 744.8477 750.7856 752.5158
#> [105] 764.5237 768.6393 771.6456 779.5153 786.8255 787.5110 808.6510 813.3338
#> [113] 814.4154 826.6806 833.8251 840.3407 855.8153 864.3202 867.6960 868.4448
#> [121] 911.7489 925.4477 929.8218 949.8072 970.7962 997.8091
std$rt[index==1]
#>   [1]   86.3490   85.3860   85.0640  639.2070  212.6550  161.8250  727.2225
#>   [8] 1079.6400  775.8610  785.8260  538.2950  215.0585  235.9920  216.1500
#>  [15]  166.9580   48.8480  462.2210  169.9680  170.6010  612.2700  453.1570
#>  [22]  147.8960  170.2755  615.0550  639.1010  639.1010  145.8285  416.1050
#>  [29]  146.3950  895.9095  823.9060  802.2200  145.9680  588.6960  439.6780
#>  [36]  895.6960  486.4080  161.3960  145.1090  583.7690  599.8400  600.9120
#>  [43]  585.6975  581.3045  636.9560  595.1260  717.1835  639.3140  648.9580
#>  [50]  480.8010  762.5750  659.8815  218.8600  594.6970  574.3400  561.2700
#>  [57]  493.3975  217.1550  527.9020  582.4810  665.0290  762.5750  503.1510
#>  [64]  687.8085  213.7130  613.1270  213.9420  214.8080  404.5340  582.4815
#>  [71]  582.6970  870.6220  213.7270  215.7020  762.5770  762.7890  628.3425
#>  [78]  762.7890  439.2500  546.9100  439.4630  170.0260  762.3630  213.7270
#>  [85]  473.5890  819.4060  819.5150  216.9670  762.5750  213.9410  455.1500
#>  [92]  145.1850  630.7000  818.9790  818.7645  468.4360  528.2230  698.3510
#>  [99]  214.2010  215.2290  714.7460  214.3560  217.4155  522.4370  773.9350
#> [106]  624.0560  613.5550  519.6690  215.4870  692.6730  628.5550  214.9295
#> [113]  490.2940  628.4480  214.0170  213.3340  215.4970  639.2070  632.6270
#> [120]  493.9370  650.4570  476.5790  213.3340  214.6300  213.9110  213.3590

Shiny application

An interactive document has been included in this package to perform PMD analysis. You need to prepare a csv file with m/z and retention time of peaks. Such csv file could be generated by run enviGCMS::getcsv() on the list object from enviGCMS::getmzrt(xset) function. The xset should be XCMSnExp object or xcmsSet object. You could also generate the csv file by enviGCMS::getmzrt(xset,name = 'test'). You will find the csv file in the working dictionary named test.csv.

Then you could run runPMD() to start the Graphical user interface(GUI) for GlobalStd algorithm and structure/reaction directed analysis.

Conclusion

pmd package could be used to reduce the redundancy peaks for GC/LC-MS based research and perform structure/reaction directed analysis to screen known and unknown important compounds or reactions.