superpc: Supervised Principal Components

Does prediction in the case of a censored survival outcome, or a regression outcome, using the "supervised principal component" approach. 'Superpc' is especially useful for high-dimensional data when the number of features p dominates the number of samples n (p >> n paradigm), as generated, for instance, by high-throughput technologies.

Version: 1.12
Depends: R (≥ 3.5.0)
Imports: survival, stats, graphics, grDevices
Published: 2020-10-19
DOI: 10.32614/CRAN.package.superpc
Author: Eric Bair [aut], Jean-Eudes Dazard [cre, ctb], Rob Tibshirani [ctb]
Maintainer: Jean-Eudes Dazard <jean-eudes.dazard at case.edu>
License: GPL (≥ 3) | file LICENSE
URL: http://www-stat.stanford.edu/~tibs/superpc, https://github.com/jedazard/superpc
NeedsCompilation: no
Citation: superpc citation info
Materials: README NEWS
In views: Survival
CRAN checks: superpc results

Documentation:

Reference manual: superpc.pdf

Downloads:

Package source: superpc_1.12.tar.gz
Windows binaries: r-devel: superpc_1.12.zip, r-release: superpc_1.12.zip, r-oldrel: superpc_1.12.zip
macOS binaries: r-release (arm64): superpc_1.12.tgz, r-oldrel (arm64): superpc_1.12.tgz, r-release (x86_64): superpc_1.12.tgz, r-oldrel (x86_64): superpc_1.12.tgz
Old sources: superpc archive

Reverse dependencies:

Reverse imports: MetabolicSurv, MicrobiomeSurv
Reverse suggests: caret, flowml, fscaret, gspcr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=superpc to link to this page.