The goal of vsp
is to enable fast, spectral estimation
of latent factors in random dot product graphs. Under mild assumptions,
the vsp
estimator is consistent for (degree-corrected)
stochastic blockmodels, (degree-corrected) mixed-membership stochastic
blockmodels, and degree-corrected overlapping stochastic
blockmodels.
More generally, the vsp
estimator is consistent for
random dot product graphs that can be written in the form
E(A) = Z B Y^T
where Z
and Y
satisfy the varimax
assumptions of [1]. vsp
works on directed and undirected
graphs, and on weighted and unweighted graphs. Note that
vsp
is a semi-parametric estimator.
You can install the released version of vsp
from CRAN
with
install.packages("vsp")
You can install the development version of vsp
with:
install.packages("devtools")
::install_github("RoheLab/vsp") devtools
Obtaining estimates from vsp
is straightforward. We
recommend representing networks as igraph
objects or sparse
adjacency matrices using the Matrix
package. Once you have your network in one of these formats, you can get
estimates by calling the vsp()
function. The result is a
vsp_fa
S3 object.
Here we demonstrate vsp
usage on an igraph
object, using the enron
network from
igraphdata
package to demonstrate this functionality. First
we peak at the graph:
library(igraph)
data(enron, package = "igraphdata")
image(sign(get.adjacency(enron, sparse = FALSE)))
Now we estimate:
library(vsp)
<- vsp(enron, rank = 30)
fa
fa#> Vintage Sparse PCA Factor Analysis
#>
#> Rows (n): 184
#> Cols (d): 184
#> Factors (rank): 30
#> Lambda[rank]: 0.2077
#> Components
#>
#> Z: 184 x 30 [dgeMatrix]
#> B: 30 x 30 [dgeMatrix]
#> Y: 184 x 30 [dgeMatrix]
#> u: 184 x 30 [matrix]
#> d: 30 [numeric]
#> v: 184 x 30 [matrix]
get_varimax_z(fa)
#> # A tibble: 184 × 31
#> id z01 z02 z03 z04 z05 z06 z07 z08
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 row0… 2.42e-4 -0.00245 -2.99e-2 3.37e-4 9.96e-5 -0.0114 -0.00849 0.502
#> 2 row0… -2.52e-3 0.00135 6.70e-4 -1.63e-1 -1.47e-2 0.0471 0.190 0.00181
#> 3 row0… 2.98e-4 -0.100 1.17e-4 -3.62e-3 -2.06e-2 0.187 -0.158 0.00303
#> 4 row0… -7.75e-5 -0.0183 1.17e-4 5.42e-2 -5.58e-3 0.00165 -0.0367 -0.00106
#> 5 row0… -2.31e-3 0.00150 2.57e-1 -1.42e-2 -4.38e-2 0.00629 1.18 -0.0179
#> 6 row0… -3.46e-2 -0.0527 -2.61e-2 -1.26e-2 -1.83e-2 0.0282 0.408 -0.0286
#> 7 row0… -1.08e-3 -0.327 -6.01e-1 -6.98e-2 -9.85e-2 -0.0709 0.509 0.0511
#> 8 row0… 1.58e-2 -0.0518 -1.34e-2 -1.03e-2 -4.12e-3 -0.0139 0.225 -0.0244
#> 9 row0… 2.22e-3 0.0752 3.30e-2 -6.50e-4 -5.00e-1 -0.0278 -0.0740 -0.00556
#> 10 row0… 7.13e-4 -0.0119 1.95e-2 -5.06e-3 -7.08e-3 0.00341 -0.00369 13.4
#> # … with 174 more rows, and 22 more variables: z09 <dbl>, z10 <dbl>, z11 <dbl>,
#> # z12 <dbl>, z13 <dbl>, z14 <dbl>, z15 <dbl>, z16 <dbl>, z17 <dbl>,
#> # z18 <dbl>, z19 <dbl>, z20 <dbl>, z21 <dbl>, z22 <dbl>, z23 <dbl>,
#> # z24 <dbl>, z25 <dbl>, z26 <dbl>, z27 <dbl>, z28 <dbl>, z29 <dbl>, z30 <dbl>
To visualize a screeplot of the singular value, use:
screeplot(fa)
At the moment, we also enjoy using pairs plots of the factors as a diagnostic measure:
plot_varimax_z_pairs(fa, 1:5)
plot_varimax_y_pairs(fa, 1:5)
Similarly, an IPR pairs plot can be a good way to check for singular vector localization (and thus overfitting!).
plot_ipr_pairs(fa)
plot_mixing_matrix(fa)
Code to reproduce the results from the paper is available here.