The IXTEX3 Sources

The KTEX Project*
Released 2024-05-08

Abstract

This is the typset sources for the expl3 programming environment; see the matching
interface3 PDF for the API reference manual. The expl3 modules set up a naming
scheme for I¥TEX commands, which allow the IXTEX programmer to systematically
name functions and variables, and specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document

1.1 Naming functions and variables
1.1.1 Scratch variableso oo
1.1.2 Terminological inexactitude

1.2 Documentation conventions

1.3 Formal language conventions which apply generally

1.4 TgX concepts not supported by BTEX3

II Bootstrapping

2

The 13bootstrap module: Bootstrap code
2.1 Using the BTEX3 modules

The 13names module: Namespace for primitives
3.1 Setting up the KTEX3 programming language

IIT Programming Flow

4

The 13basics module: Basic definitions
4.1 No operation functions
4.2 Grouping materialo oL
4.3 Control sequences and functions, .
4.3.1 Defining functions oo oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences Lo
4.3.5 Deleting control sequences oL Lo
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analysing control sequences oo
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionals.o
4.6.1 Tests on control sequences
4.6.2 Primitive conditionals oo 0oL
4.7 Starting a paragraph oL oL
4.8 Debugging support L e

ii

p—

N Ot ot ot N

The 13expan module: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants L L.
Introducing the variants L oo o
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.
Unbraced expansion oo
Preventing expansiono Lo Lo
Controlled expansion Lo
Internal functions oL L Lo

The I3sort module: Sorting functions

6.1

Controlling sorting L

The I3tl-analysis module: Analysing token lists

The 13regex module: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L oo
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens oo oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg module: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Constant and scratch booleans
Boolean expressionso L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L oo
Nestable recursions and mappings
9.8.1 Simple mappingsot
Internal programming functions Lo

iii

31
31
32
34
35
37
37
39
40
41
43

44
44

46

47
48
48
49
49
50
o1
53
53
95
o6
57
58
60
60

10 The I3sys module: System/runtime functions 74

10.1 The name of the job 74
10.2 Dateand time L 74
10.3 Engine L 75
10.4 Output format Lo 76
10.5 Platform 76
10.6 Random numbers L Lo 76
10.7 Accesstotheshell 77
10.8 System queries e 78
10.9 Loading configuration data oL, 79
10.9.1 Final settings o 79

11 The I3msg module: Messages 80
11.1 Creating new messages v v v vt v i e 80
11.2 Customizable information for message modules 81
11.3 Contextual information for messages 82
11,4 Tssuing mesSsages v v v v it e e e e 83
11.4.1 Messages for showing material 87

11.4.2 Expandable error messages L L. 87

11.5 Redirecting messages L o 88

12 The I3file module: File and I/O operations 90
12.1 Input-output stream management L. 90
12.1.1 Reading from files o . 92

12.1.2 Reading from the terminal 0. 96

12.1.3 Writing to files oL 96

12.1.4 Wrapping lines in output 98

12.1.5 Constant input—output streams, and variables 99

12.1.6 Primitive conditionals 0oL 99

12.2 Fileoperations L Lo e 99
12.2.1 Basic file operations 0. 99

12.2.2 Information about files and file contents 100

12.2.3 Accessing file contentso oo 103

13 The I3luatex module: LuaTgX-specific functions 105
13.1 BreakingouttoLua. o 105
13.2 Luainterfaces 106

14 The I3legacy module: Interfaces to legacy concepts 108
IV Data types 109

iv

15 The 13tl module: Token lists
15.1 Creating and initialising token list variables
15.2 Adding data to token list variables
15.3 Token list conditionals
15.3.1 Testing the first token L L oL
15.4 Working with token lists asa whole
15.4.1 Using token lists o
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists L oo oL
15.5 Manipulating items in token lists o000
15.5.1 Mapping over token lists L oL
15.5.2 Head and tail of token lists
15.5.3 Items and ranges in token lists
15.5.4 Sorting token lists L o
15.6 Manipulating tokens in token lists
15.6.1 Replacing tokenso o
15.6.2 Reassigning category codes
15.7 Constant token lists L oL
15.8 Scratch token lists

16 The 13tl-build module: Piecewise t1 constructions
16.1 Constructing (t1 var) by accumulation

17 The I3str module: Strings
17.1 Creating and initialising string variables
17.2 Adding data to string variables oL oL
17.3 String conditionals L L o
17.4 Mapping over strings
17.5 Working with the content of strings
17.6 Modifying string variables o oL
17.7 String manipulation
17.8 Viewing strings L Lo
17.9 Constant strings L L
17.10 Scratch strings oL L

18 The I3str-convert module: String encoding conversions
18.1 Encoding and escaping schemes
18.2 Conversion functions L L o
18.3 Conversion by expansion (for PDF contexts)
18.4 Possibilities, and thingstodo

19 The I3quark module: Quarks and scan marks
19.1 Quarks
19.2 Defining quarks Lo
19.3 Quark tests
19.4 Recursion e e
19.4.1 An example of recursion with quarks
19.5 Scan marks Lo

110
110
111
112
114
115
115
116
117
118
118
119
121
123
123
123
124
125
126

127
127

129
130
131
131
133
135
138
139
140
141
141

142
142
144
144
144

20 The 13seq module: Sequences and stacks

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Creating and initialising sequences . . .
Appending data to sequences
Recovering items from sequences

Recovering values from sequences with branching

Modifying sequences
Sequence conditionals
Mapping over sequences
Using the content of sequences directly .
Sequences as stackso

20.10 Sequences assets
20.11 Constant and scratch sequences
20.12 Viewing sequences

21 The 13int module: Integers

21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
21.9

Integer expressions
Creating and initialising integers
Setting and incrementing integers
Using integers
Integer expression conditionals
Integer expression loops.
Integer step functions
Formatting integers
Converting from other formats to integers

21.10 Random integers
21.11 Viewing integers
21.12 Constant integers
21.13 Scratch integers
21.14 Direct number expansion
21.15 Primitive conditionals

22 The I3flag module: Expandable flags

22.1
22.2

Setting up flags
Expandable flag commands

23 The 13clist module: Comma separated lists

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9

Creating and initialising comma lists . .
Adding data to comma lists
Modifying comma lists
Comma list conditionals
Mapping over comma lists
Using the content of comma lists directly
Comma lists as stacks
Using a single item
Viewing comma lists

23.10 Constant and scratch comma lists

vi

151
151
153
153
155
156
157
157
160
161
162
163
164

165
165
168
169
170
170
172
174
175
176
177
177
178
178
179
179

181
181
182

24 The I3token module: Token manipulation

24.1
24.2
24.3
24.4
24.5
24.6
24.7

Creating character tokens
Manipulating and interrogating character tokens
Generic tokenso
Converting tokens L oL
Token conditionals Lo
Peeking ahead at the next token
Description of all possible tokens

25 The 13prop module: Property lists

25.1
25.2
25.3
254
25.5
25.6
25.7
25.8
25.9
25.10

Creating and initialising property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo
Property list conditionals L 0 L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. oo
Scratch property lists Lo o
Constants e

26 The I13skip module: Dimensions and skips

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13
26.14
26.15
26.16
26.17
26.18
26.19
26.20
26.21
26.22
26.23
26.24
26.25

Creating and initialising dim variables.
Setting dim variables L oL
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso o oo
Using dim expressions and variables
Viewing dim variables L
Constant dimensions Lo
Scratch dimensions
Creating and initialising skip variables
Setting skip variables o Lo
Skip expression conditionals Lo oL
Using skip expressions and variables
Viewing skip variables o oo oo
Constant skips L
Scratch skips oL
Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables oL o
Using muskip expressions and variables
Viewing muskip variables oL oL oL
Constant muskips oL Lo
Scratch muskipso
Primitive conditional Lo oo

vii

195
196
197
200
201
201
205
210

213
214
216
217
218
218
219
220
221
222
222

27 The 13keys module: Key—value interfaces

27.1
27.2
27.3
274
27.5
27.6
27.7
27.8
27.9

Creating keys
Sub-dividing keys oL oL
Choice and multiple choice keys
Key usage scopeo o o
Setting keys
Handling of unknown keys
Selective key setting oL
Digesting keys o
Utility functions for keys oL
27.10 Low-level interface for parsing key—val lists

28 The I3intarray module: Fast global integer arrays

28.1
28.2
28.3
28.4
28.5
28.6
28.7

Creating and initialising integer array variables
Adding data to integer arrays
Counting entries in integer arrays
Using asingleentry oL
Integer array conditional oL
Viewing integer arrays
Implementation notes

29 The 13fp module: Floating points

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9

Creating and initialising floating point variables
Setting floating point variables L.
Using floating points Lo
Floating point conditionals
Floating point expression loops
Symbolic expressions Lo
User-defined functions
Some useful constants, and scratch variables
Scratch variables oL o o
29.10 Floating point exceptions
29.11 Viewing floating points
29.12 Floating point expressions
29.12.1 Input of floating point numbers
29.12.2 Precedence of operators
29.12.30perations
29.13 Disclaimer and roadmap

30 The I3fparray module: Fast global floating point arrays

30.1
30.2
30.3
30.4
30.5

Creating and initialising floating point array variables
Adding data to floating point arrays.
Counting entries in floating point arrays
Using asingleentry oL
Floating point array conditional

31 The I3bitset module: Bitsets

31.1
31.2
31.3

Creating bitsets
Setting and unsetting bits oL
Using bitsets o oo

viii

239
240
245
246
248
248
249
250
251
251
252

255
255
256
256
256
256
256
257

258
260
260
261
262
264
266
268
269
269
270
271
271
271
272
273
280

283
283
283
284
284
284

32 The I3cctab module: Category code tables
32.1 Creating and initialising category code tables
32.2 Using category code tables Lo o L
32.3 Category code table conditionals
32.4 Constant and scratch category code tables

V Text manipulation
33 The 13unicode module: Unicode support functions

34 The I3text module: Text processing
34.1 Expanding text
34.2 Casechanging L
34.3 Removing formatting from text 0oL
34.4 Control variableso
34.5 Mapping to graphemes oL L oo

VI Typesetting

35 The I13box module: Boxes
35.1 Creating and initialising boxes oo
35.2 Using boxes e
35.3 Measuring and setting box dimensionso
35.4 Box conditionals
35.5 The last box inserted
35.6 Constant boxes
35.7 Scratch boxes e e
35.8 Viewing box contents L oo
35.9 Boxesand color e
35.10 Horizontal mode boxes
35.11 Vertical mode boxes
35.12 Using boxes efficiently oo
35.13 Affine transformations
35.14 Viewing part of abox oL L
35.15 Primitive box conditionals

36 The I3coffins module: Coffin code layer
36.1 Creating and initialising coffins o000
36.2 Setting coffin content and poles L.
36.3 Coflin affine transformations
36.4 Joining and using coffins L oo oL oo
36.5 Measuring coffins oL L
36.6 Coffin diagnostics
36.7 Constants and variables. oL o0

ix

289
289
290
290
290

292
293

296
296
297
299
299
300

37 The I13color module: Color support 321

37.1 Colorin boxes o 321
372 Colormodels. 321
37.3 Color expressions v . v e e e e e e e e e e e 323
374 Named colors 324
37.5 Selecting colorso 324
37.6 Colors for fills and strokes L oL o 325
37.6.1 Coloring math mode material 325

37.7 Multiple color models e 325
37.8 Exporting color specifications o000 326
379 Creating new colormodels L oL 327
37.9.1 Color profiles 328

38 The 13pdf module: Core PDF support 329
38.1 Objects o o e 329
38.1.1 Named objects 329

38.1.2 Indexed objects Lo L 330

38.1.3 General functionso 330

382 Version Lo e 331
38.3 Page (media) size 331
38.4 Compressiono uu e e 331
38.5 Destinationso 332
VII Implementation 333
39 13bootstrap implementation 334
39.1 The \pdfstrcmp primitive in XqITEgX 334
39.2 Loading support Luacode L L L. 334
39.3 Engine requirements Lo 335
39.4 The BTEX3 code environment L. 336

40 I3names implementation 338
41 13kernel-functions: kernel-reserved functions 364
41.1 Internal 13debug kernel functions 0oL 364
41.2 Internal kernel functions L oL Lo 365
41.3 Kernel backend functions oL 372

42 13basics implementation 374
42.1 Renaming some TEX primitives (again) 374
42.2 Defining some constantso oL oo 376
42.3 Defining functionso oL o 376
424 Selecting tokens Lo 377
42.5 Gobbling tokens from input L0 380
42.6 Debugging and patching later definitions 380
42.7 Conditional processing and definitions 0oL 381
42.8 Dissecting a control sequence oL oL L 387
429 Existorfree L e 389
42.10 Preliminaries for new functions L oL 392

42.11 Defining new functions
42.12 Copying definitions e
42.13 Undefining functions L oL oo
42.14 Generating parameter text from argument count
42.15 Defining functions from a given number of arguments
42.16 Using the signature to define functions
42.17 Checking control sequence equality
42.18 Diagnostic functions o
42.19 Decomposing a macro definition oL 0oL
42.20 Doing nothing functions oL oo oL
42.21 Breaking out of mapping functions
42.22 Starting a paragrapho
43 13expan implementation
43.1 General expansiono o e
43.2 Hand-tuned definitions L oL oL
43.3 Last-unbraced versions L oo
43.4 Preventing expansiono
43.5 Controlled expansion
43.6 Defining function variants L Lo oo
43.7 Definitions with the automated technique
43.8 Held-over variant generation oL
44 13sort implementation
44.1 Variables L e
44.2 Finding available \toks registers oL
44.3 Protected user commands Lo
444 Merge sort oL e
44.5 Expandable sorting Lo
446 MeSSages . . .«o e e e
45 I13tl-analysis implementation
45.1 Internal functions L Lo
45.2 Internal format oL o
45.3 Variables and helper functions 000
454 Planof attack
45.5 Disabling active characters L 0oL
45.6 First passo
45.7 Second PaSS o u e e e e
45.8 Mapping through the analysis
45.9 Showing the results L o
45.10 Peeking ahead Lo o
45.11 MeSsages . . .« v o e e e e e e e e e e

Xi

406
406
410
413
415
415
416
426
427

429
429
430
432
434
437
442

46 13regex implementation 470

46.1
46.2

46.3

46.4

46.5

46.6

46.7

46.8

Plan of attack 470

Helpers o 0 471
46.2.1 Constants and variables 0L 474
46.2.2 Testing characters Lo oo 474
46.2.3 Internal auxiliaries Lo L oo 475
46.2.4 Character property tests 478
46.2.5 Simple character escape 480

Compiling« L 486
46.3.1 Variables used when compiling 487
46.3.2 Generic helpers used when compiling 488
46.3.3 Mode e 489
46.3.4 Framework L 491
46.3.5 Quantifiers 494
46.3.6 Raw characters 497
46.3.7 Character properties oo 499
46.3.8 Anchoring and simple assertions 500
46.3.9 Character classes e 500
46.3.10 Groups and alternations 504
46.3.11 Catcodes and csnames oo 506
46.3.12Raw token lists with \u oL 510
46.3.130ther 514
46.3.14 ShowWing regexes v v v v v v e e e e e e e e 514

Building 521
46.4.1 Variables used while building 521
46.4.2 Framework 522
46.4.3 Helpers for building an NFAo L oL 525
46.4.4 Building classes Lo e 526
46.4.5 Building groupso e 528
46.4.6 Others e 532

Matching 534
46.5.1 Variables used when matching 534
46.5.2 Matching: framework oL, 537
46.5.3 Using states of the NFA L 540
46.5.4 Actions when matching L. 541

Replacement 543
46.6.1 Variables and helpers used in replacement 543
46.6.2 Query and brace balance 0oL 545
46.6.3 Framework Lo 546
46.6.4 Submatches 549
46.6.5 Csnames in replacement 551
46.6.6 Characters in replacement oL 552
46.6.7 Anerror 556

User functions o o e 556
46.7.1 Variables and helpers for user functions 560
46.7.2 Matching L e 561
46.7.3 Extracting submatches 0oL 562
46.7.4 Replacement L 567
46.7.5 Peeking ahead o oo 570

MeSSages . . . v o o e e e e e e e e 576

xii

46.9 Code for tracing oL
47 13prg implementation
47.1 Primitive conditionals L oo
47.2 Defining a set of conditional functions
47.3 The boolean data type
474 Internal auxiliaries
47.5 Boolean expressions oL o e
47.6 Logical loops L e
47.7 Producing multiple copieso oo
47.8 Detecting TEX’smode Lo
47.9 Internal programming functions oL oL
48 13sys implementation
48.1 Kernel code L e
48.1.1 Detecting the engine L oL
48.1.2 Platform
48.1.3 Configurations L o
48.1.4 Access totheshell o
48.2 Dynamic (every job) code L
48.2.1 The name of thejob
48.2.2 Time and date
48.2.3 Random numberso
48.2.4 Access totheshell o oo
48.3 System querieso
48.3.1 Held over from 13file,
48.4 Last-minute code L
48.4.1 Detecting theoutput oL
48.4.2 Configurations L L o
49 13msg implementation
49.1 Imternal auxiliaries L
49.2 Creating meSSages v v v vt i e e e e e
49.3 Messages: support functions and texto oL
49.4 Showing messages: low level mechanism
49.5 Displaying messages« . . . o i ot e e e e
49.6 Kernel-specific functions L oo
49.7 Internal messageso
49.8 Expandable errorso
49.9 Message formatting

xiii

584
o84
584
584
586
588
592
994
595
596

598
998
598
601
601
604
606
606
607
608
609
609
611
611
611
612

50 I13file implementation
50.1 Input operations

50.1.1 Variables and constants
50.1.2 Stream management

50.1.3 Reading input .
50.2 Output operations . . .

50.2.1 Variables and constants
50.2.2 Internal auxiliaries e

50.3 Stream management .
50.3.1 Deferred writing
50.3.2 Immediate writing
50.3.3 Special characters

for writing

50.3.4 Hard-wrapping lines to a character count

50.4 File operations

50.4.1 Internal auxiliaries

50.5 GetldInfo

50.6 Checking the version of kernel dependencies

50.7 Messages

50.8 Functions delayed from earlier modules

51 13luatex implementation
51.1 Breaking out to Lua . .
51.2 Messages

51.3 Lua functions for internal use

51.4 Preserving iniTeX Lua d
52 13legacy implementation

53 13tl implementation
53.1 Functions.
53.2 Constant token lists . .

ataforruns o

53.3 Adding to token list variables 00000
53.4 Internal quarks and quark-query functions
53.5 Reassigning token list category codes oL

53.6 Modifying token list vari
53.7 Token list conditionals
53.8 Mapping over token lists
53.9 Using token lists

ables

53.10 Working with the contents of token lists
53.11 The first token from a token list

53.12 Token by token changes
53.13 Using a single item . .
53.14 Viewing token lists . .
53.15 Internal scan marks . .
53.16 Scratch token lists . . .

54 13tl-build implementation

Xiv

638
638
638
639
642
645
645
646
647
649
650
651
651
660
662
678
679
681
681

683
683
684
684
690

692

694
694
696
696
699
700
703
707
712
714
714
717
722
724
727
729
729

730

55 13str implementation
55.1 Internal auxiliaries L Lo o
55.2 Creating and setting string variables
55.3 Modifying string variables 0oL 0oL
55.4 String comparisons Lo e
55.5 Mapping over stringso
55.6 Accessing specific characters in a string,
55.7 Counting characters
55.8 The first character in a string L Lo
55.9 String manipulation oL oL
55.10 Viewing stringso

56 13str-convert implementation
56.1 Helpers o
56.1.1 Variables and constants oL
56.2 String conditionals
56.3 Conversions i e e e e e e e e e e e
56.3.1 Producing one byte or character
56.3.2 Mapping functions for conversions
56.3.3 Error-reporting during conversion.
56.3.4 Framework for conversions. L.
56.3.5 Byte unescape and escape oL
56.3.6 Native stringso oo
56.3.7 clist e
56.3.8 8-bit encodings Lo
56.4 MesSsageso
56.5 Escaping definitions
56.5.1 Unescape methods
56.5.2 Escape methods,
56.6 Encoding definitions L o oL
56.6.1 UTF-8 support e
56.6.2 UTF-16 support
56.6.3 UTF-32 support e e
56.7 PDF names and strings by expansion00
56.7.1 1SO 8859 supporto

57 13quark implementation

57.1 Quarks
57.2 Scanmarks

XV

58 13seq implementation
58.1 Allocation and initialisation Lo
58.2 Appending data to eitherend oL
58.3 Modifying sequenceso
58.4 Sequence conditionalso L oo
58.5 Recovering data from sequences oL
58.6 Mapping over SEqUENCES . « . . v v v v v e e e e e e e e e
58.7 Using Sequences« . v vt i e e e e e e e
58.8 Sequence stacks
58.9 Viewing sequenceso o e
58.10 Scratch sequences L oL L
59 13int implementation
59.1 Integer expressionso
59.2 Creating and initialising integers
59.3 Setting and incrementing integerso L.
59.4 Using integers
59.5 Integer expression conditionals oL
59.6 Integer expression loops.o oo
59.7 Integer step functions L oo
59.8 Formatting integers Lo
59.9 Converting from other formats to integers
59.10 Viewing integer o
59.11 Random integers L
59.12 Constant integers Lo
59.13 Scratch integers
59.14 Integers for earlier modules
60 13flag implementation
60.1 Protected flag commandso oL
60.2 Expandable flag commands L 0oL 0oL
60.3 Old n-type flag commands
61 13clist implementation
61.1 Removing spaces around items Lo
61.2 Allocation and initialisation
61.3 Adding data to comma lists oo o
61.4 Comma listsasstacks oo
61.5 Modifying comma lists 0L oL
61.6 Comma list conditionals oo
61.7 Mapping over comma lists Lo L Lo L
61.8 Using comma lists L o o
61.9 Using asingleitem L o
61.10 Viewing comma lists L L oo
61.11 Scratch comma lists L

XVi

818
819
822
823
827
829
833
838
839
839
840

841
842
844
846
847
847
851
852
854
860
862
863
863
864
864

865
865
866
867

62 13token implementation

62.1
62.2
62.3
62.4
62.5
62.6

Internal auxiliaries L o
Manipulating and interrogating character tokens
Creating character tokens
Generic tokens Lo
Token conditionals Lo
Peeking ahead at the next token

63 13prop implementation

63.1
63.2
63.3
63.4
63.5
63.6
63.7
63.8
63.9
63.10

64 13skip
64.1
64.2
64.3
64.4
64.5
64.6
64.7
64.8
64.9
64.10
64.11
64.12
64.13
64.14
64.15
64.16
64.17
64.18
64.19
64.20
64.21
64.22
64.23
64.24
64.25
64.26
64.27

Internal auxiliaries L L Lo
Structure of a property list L
Allocation and initialisation
Accessing data in property lists
Removing data from property lists
Adding data to property lists
Property list conditionals o o0 oL
Mapping over property lists oo oL
Uses of mapping over property lists
Viewing property lists. oL oo

implementation

Length primitives renamed oL oL
Internal auxiliaries L L Lo
Creating and initialising dim variables.
Setting dim variables
Utilities for dimension calculations
Dimension expression conditionals
Dimension expression loops oL L oo
Dimension step functions oo oo
Using dim expressions and variables
Conversion of dim to other units
Viewing dim variableso L oo
Constant dimensions o
Scratch dimensions L Lo
Creating and initialising skip variables
Setting skip variables oL oL
Skip expression conditionals L L L.
Using skip expressions and variables
Inserting skips into the output 0oL
Viewing skip variables oo oo
Constant skips
Scratch skips e e e
Creating and initialising muskip variables
Setting muskip variables Lo oo
Using muskip expressions and variables
Viewing muskip variables oL L Lo
Constant muskips
Scratch muskips

xXvii

890
890
890
893
896
898
908

915
916
917
919
926
929
932
934
936
938
939

65 13keys implementation 965
65.1 Low-level interface L 965
65.2 Constants and variables. oL 972

65.2.1 Internal auxiliaries oL 974
65.3 The key defining mechanism 0oL 975
65.4 Turning properties into actions L oL 977
65.5 Creating key properties L oL o 984
65.6 Setting keys 990
65.7 Utilities oL 999
65.8 Messages 1002

66 13intarray implementation 1004

66.1 Lua implementation L 0L 1004
66.1.1 Allocating arrays o o 1004
66.1.2 Array items oL 1007
66.1.3 Working with contents of integer arrays 1009

66.2 Font dimension based implementation 1010
66.2.1 Allocating arrays o e 1011
66.2.2 Array items 1012
66.2.3 Working with contents of integer arrays 1014

66.3 Common partso e 1016

67 13fp implementation 1017

68 13fp-aux implementation 1018
68.1 Access to primitives 1018
68.2 Internal representation L oL oL 1018
68.3 Using arguments and semicolons Lo 1019
68.4 Constants, and structure of floating points 1020
68.5 Overflow, underflow, and exact zero 1023
68.6 Expanding after a floating point number00 1023
68.7 Other floating point types oL oL 1024
68.8 Packing digitso 1027
68.9 Decimate (dividing by a power of 10) 1030
68.10 Functions for use within primitive conditional branches 1032
68.11 Integer floating points L L L 1033
68.12 Small integer floating points o o 0oL 1034
68.13 Fast string comparison L L oo 1035
68.14 Name of a function from its 13fp-parse name 1035
68.15 MeESSAZES « .« v v v e e e e e e e e e e e e e e e 1035

69 13fp-traps implementation 1036
69.1 Flags o o 1036
69.2 Traps 1036
69.3 Errors e e e 1040
69.4 Messages 1040

70 13fp-round implementation 1042
70.1 Rounding tools 1042
70.2 The round function e 1046

xXviii

71 13fp-parse implementation

71.1

71.2
71.3
71.4

71.5

71.6

1.7

71.8
71.9

Work plano
71.1.1 Storing results L
71.1.2 Precedence and infix operators
71.1.3 Prefix operators, parentheses, and functions
71.1.4 Numbers and reading tokens one by one

Main auxiliary functions

Helpers o o e

Parsing one numbero
71.4.1 Numbers: trimming leading zeros
71.4.2 Number: small significand
71.4.3 Number: large significand
71.4.4 Number: beyond 16 digits, rounding
71.4.5 Number: finding the exponent

Constants, functions and prefix operators
71.5.1 Prefix operators L oo
71.5.2 Constants oo e
71.5.3 Functions L L

Main functions

Infix operators
71.7.1 Closing parentheses and commas
71.7.2 Usual infix operators oo
71.7.3 Juxtaposition Lo
71.7.4 Multi-character caseso
71.7.5 Ternary operator L Lo oL
71.7.6 CompariSons v v it e

Tools for functions L

MeESSAZES « v v v e e e e e e e e e e e e e e e

72 13fp-assign implementation

72.1
72.2
72.3
72.4

Assigning values
Updating values L L
Showing values
Some useful constants and scratch variables

73 13fp-logic implementation

73.1
73.2
73.3
73.4
73.5
73.6
73.7

Syntax of internal functions oL Lo
Tests . . . o e
Comparison e e
Floating point expression loops
Extrema e
Boolean operations L o
Ternary operator

Xix

74 13fp-basics implementation
74.1 Addition and subtraction oL oo Lo
74.1.1 Sign, exponent, and special numbers
74.1.2 Absolute addition
74.1.3 Absolute subtraction oL
74.2 Multiplication Lo
74.2.1 Signs, and special numbers L.
74.2.2 Absolute multiplication L.
74.3 Division e e e e e e e
74.3.1 Signs, and special numberso
7432 Workplan oL
74.3.3 Implementing the significand division
T4.4 Square ToOt o e e
74.5 About the sign and exponento
74.6 Operations on tuples

75 13fp-extended implementation
75.1 Description of fixed point numbers
75.2 Helpers for numbers with extended precision
75.3 Multiplying a fixed point number by a short one
75.4 Dividing a fixed point number by a small integer
75.5 Adding and subtracting fixed points
75.6 Multiplying fixed points L o o
75.7 Combining product and sum of fixed points
75.8 Extended-precision floating point numberso
75.9 Dividing extended-precision numberso
75.10 Inverse square root of extended precision numbers
75.11 Converting from fixed point to floating point

76 13fp-expo implementation
76.1 Logarithm e
76.1.1 Workplan
76.1.2 Some constants oL
76.1.3 Sign, exponent, and special numbers
76.1.4 AbsoluteIn
76.2 Exponential
76.2.1 Sign, exponent, and special numbers
76.3 Power. e e e
76.4 Factorial e e

77 13fp-trig implementation
77.1 Direct trigonometric functions
77.1.1 Filtering special cases

77.1.2 Distinguishing small and large arguments

77.1.3 Small arguments
77.1.4 Argument reduction in degrees
77.1.5 Argument reduction in radians
77.1.6 Computing the power series . .
77.2 Inverse trigonometric functions . . .
77.2.1 Arctangent and arccotangent .
77.2.2 Arcsine and arccosine
77.2.3 Arccosecant and arcsecant . . .

78 13fp-convert implementation
78.1 Dealing with tuples
78.2 Trimming trailing zeros
78.3 Scientific notation
78.4 Decimal representation
78.5 Token list representation
78.6 Formatting
78.7 Convert to dimension or integer . . .
78.8 Convert from a dimension
789 Useandeval

78.10 Convert an array of floating points to a comma list

79 13fp-random implementation
79.1 Engine support
79.2 Random floating point
79.3 Random integer

80 13fp-types implementation
80.1 Support for types
80.2 Dispatch according to the type. . . .

81 13fp-symbolic implementation
81.1 Misc
81.2 Building blocks for expressions
81.3 Expanding after a symbolic expression

81.4 Applying infix operators to expressions
81.5 Applying prefix functions to expressions L.

81.6 Conversions
81.7 Identifiers

81.8 Declaring variables and assigning values

81.9 Messages o
81.10 Road-map

82 13fp-functions implementation

82.1 Declaring functions
82.2 Defining functions by their expression

XX1

83 13fparray implementation
83.1 Allocating arrays o i e
83.2 Arrayitems
84 13bitset implementation
84.1 MeSSAZES « .« v v v e e e e e e e e e e e e
85 13cctab implementation
85.1 Variables L
85.2 Allocating category code tables
85.3 Saving category code tables oL
85.4 Using category code tables oL
85.5 Category code table conditionals oL
85.6 Constant category code tables Lo
85.7 MeSSAgES « . v v v e e e e e e e e e
86 13unicode implementation
86.1 User functions
86.2 Dataloader e
87 13text implementation
87.1 Internal auxiliaries L Lo
87.2 Utilities e e e e
87.3 Codepoint utilities e
87.4 Configuration variables oL oo oL
87.5 Expansion to formatted text oo
88 I3text-case implementation
88.1 Casechanging L
89 I3text-map implementation
89.1 Mapping totext
90 I3text-purify implementation
90.1 Purifying text oL
90.2 Accent and letter-like data for purifying text
91 I13box implementation
91.1 Support code
91.2 Creating and initialising boxes oo oo
91.3 Measuring and setting box dimensions
91.4 Using boxes e
91.5 Box conditionals
91.6 The last box inserted e
91.7 Constant boxes
91.8 Scratch boxes L
91.9 Viewing box contents L oo
91.10 Horizontal mode boxes Lo oL
91.11 Vertical mode boxes e
91.12 Affine transformations e
91.13 Viewing part of abox Lo

xxii

92 13coffins implementation
92.1 Coflins: data structures and general variables
92.2 Basic coffin functionso L
92.3 Measuring coffins oL oo
92.4 Coffins: handle and pole management
92.5 Coffins: calculation of pole intersections
92.6 Affine transformations L. L Lo
92.7 Aligning and typesetting of coffins
92.8 Coffin diagnostics L
92.9 MesSsages
93 I3color implementation
93.1 Basics e e e
93.2 Predefined color names oL L oo
03.3 Setup
93.4 Utility functions
93.5 Model conversiono e e
93.6 Color expressionso
93.7 Selecting colors (and color models) L. L.
93.8 Mathcolor
93.9 Fill and stroke color Lo
93.10 Defining named colors
93.11 Exporting colorso
93.12 Additional color models oo
93.13 Applying profileso
93.14 Diagnostics. L
93.15 MESSAZES « .« v v v e e e e e e e e e e e e e e
94 13pdf implementation
94.1 Compression v oo u e e e
94.2 Objects o e
94.3 Version e e e e e e e e
94.4 Pagesize L
94.5 Destinationso
94.6 PDF Page size (media box)
95 13deprecation implementation
95.1 Patching definitions to deprecate Lo
95.2 Deprecated I3basics functions oo 0oL
95.3 Deprecated I3file functions L
95.4 Deprecated I3keys functions oL
95.5 Deprecated [3msg functions 0oL
95.6 Deprecated 13pdf functions L 0oL
95.7 Deprecated 13prg functions L oL
95.8 Deprecated [3str functions
95.9 Deprecated [3seq functions oo
95.10 Deprecated I3sys functions oo
95.11 Deprecated I3text functions oL
95.12 Deprecated I3tl functions L oo
95.13 Deprecated [3token functions oL Lo

xxiii

95.14 Deprecated 13prop functions

96 13debug implementation

Index

XXiv

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1l_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl1l }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \1let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.

g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bitset a set of bits (a string made up of a series of 0 and 1 tokens that are accessed by
position).

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.
skip “Rubber” lengths.

str String variables: contain character data.

t1l Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Non-negative integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.
regex Regular expression.

seq “Sequence”: a data type used to implement lists (with access at both ends) and
stacks.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_(type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.? On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

2TgXnically, functions with no arguments are \long while token list variables are not.

\seq_new:N
\seq_new:c

\cs_to_str:N %

\seq_map_function:NN v

\sys_if_engine_xetex:TF *

\1_tmpa_t1l

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)
As with other functions, some text should follow which explains how the function works.

Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that three functions are available:
e \sys_if_engine_xetex:T
e \sys_if_engine_xetex:F
e \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both (true code) and (false
code) will be shown. The two variant forms T and F take only (true code) and (false
code), respectively. Here, the star also shows that this function is expandable. With
some minor exceptions, all conditional functions in the expl3 modules should be defined
in this way.

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in I#TEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wunless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BETEX3

The TEX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2023-08-03

Chapter 2

The I3bootstrap module
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in interface3 (and this file) are designed to be used on top of
TEX 2¢ and are already pre-loaded since ITEX 2¢ 2020-02-02. To support older formats,
the \usepackage{expl3} or \RequirePackage{expl3} instructions are still available to
load them all as one.

As the modules use a coding syntax different from standard IWTEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document

category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IXTEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
ITEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/(day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then a leading v is optional: if given as
a “pure” version string, a v will be prepended.

\GetIdInfo

Updated: 2012-06-04

\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual XTEX 2¢ category codes and the
IXTEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The 13names module
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part 111
Programming Flow

12

\prg_do_nothing: x*

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics module
Basic definitions

As the name suggests, this module holds some basic definitions which are needed by most
or all other modules in this set.

Here we describe those functions that are used all over the place. By that, we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

TEXhackers note: These are the TEX primitives \begingroup and \endgroup.

13

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends.
The list of (tokens) to be inserted is empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group), namely a } if standard category codes apply.

TgXhackers note: This is the TEX primitive \aftergroup.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the e-TEX primitive \showgroups.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an e-type or x-type
expansion. In contrast, “protected” functions are not expanded within e and x expan-
sions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset :Npn. The definition
is global and does not result in an error if the function is already defined.

14

\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npe
cp
Np
cpx

N o

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an e-type or x-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
definition is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or or x-type argument. The definition is
global and an error results if the (function) is already defined.

15

\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected_nopar:

Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}
cpn
Npe
cpe
Npx
cpx

\cs_set:
\cs_set:
\cs_set:
\cs_set:
\cs_set:
\cs_set:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:

Npn
cpn
Npe
cpe
Npx
cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_set:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an e-type or x-type argument.

\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected_nopar:

Npn \cs_set_protected_nopar:Npn (function) (parameters) {({code)}
cpn
Npe
cpe
Npx
cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an e-type or x-type argument.

16

\cs_gset :Npn
\cs_gset:cpn
\cs_gset:Npe
\cs_gset:cpe
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npe
\cs_gset_nopar:cpe
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npe
\cs_gset_protected:cpe
\cs_gset_protected:Npx
\cs_gset_protected:cpx

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens.
The assignment of a meaning to the (function) is not restricted to the current TEX
group level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an e-type or
x-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new:(cn|Ne|ce)

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Ne|ce)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens.
The assignment of a meaning to the (function) is not restricted to the current TEX
group level: the assignment is global. The (function) will not expand within an e-type
or x-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
definition is global and an error results if the (function) is already defined.

17

\cs_new_protected:Nn
\cs_new_protected: (cn|Ne|ce)

\cs_new_protected:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The definition is global
and an error results if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}
\cs_new_protected_nopar:(cn|Ne|ce)

\cs_set:Nn
\cs_set:(cn|Ne|ce)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Ne|ce)

\cs_set_protected:Nn
\cs_set_protected:(cn|Ne|ce)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_set:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {({code)}
\cs_set_protected_nopar:(cn|Ne|ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

18

\cs_gset:Nn \cs_gset:Nn (function) {(code)}

\cs_gset:(cnlNe|ce) Sets (function) to expand to (code) as replacement text. Within the (code), the

number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {({code)}

\cs_gset _nopar: (cn/Ne|ce) Sets (function) to expand to (code) as replacement text. Within the (code), the

number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected:(cn|Ne|ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(anNe|Ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The
(function) will not expand within an e-type or x-type argument. The assignment of a
meaning to the (function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator)
\cs_generate_from_arg_count:(NNno|cNnn|Ncnn) {(number)} {(code)}

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_-
new:Npn) to define a (function) which takes (number) arguments and has (code) as
replacement text. The (number) of arguments is an integer expression, evaluated as
detailed for \int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

19

\cs_new_eq:NN
\cs_new_eq: (Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|eN|ec)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N *
\cs_meaning:c *

Updated: 2011-12-22

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequences) or (token). The second control sequence may subsequently be altered with-
out affecting the copy.

\cs_set_eq:NN (csi) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the (control sequence;) is restricted to the
current TEX group level.

\cs_gset_eq:NN (csi1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences)
(or (token)). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the (control sequence;) is not restricted to
the current TEX group level: the assignment is global.

4.3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a

very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. For
a macro, this includes the (replacement text).

TEXhackers note: This is the TEX primitive \meaning. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)

Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

20

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c

*

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

*
*
*
*

New: 2012-11-10

\cs:w
\cs_end:

*
*

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N
which displays the result in the terminal.

4.3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-
type arguments the (control sequence name) must, when fully expanded, consist of
character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12
(other).

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

would be equivalent to
\abc
after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it
is inserts the (control sequence) into the input stream followed by the (true code).
Otherwise the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be
literal material or from other expandable functions. The (control sequence name)
must, when fully expanded, consist of character tokens which are not active: typically of
category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TgXhackers note: These are the TEX primitives \csname and \endcsname
As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:

and

21

\cs_to_str:N *

\cs_split_function:N =

New: 2018-04-06

\cs_prefix_spec:N *

New: 2019-02-27

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code
12 (other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an e-type or x-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

4.4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found
(to differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TgXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

22

\cs_parameter_spec:N *

New: 2022-06-24

\cs_replacement_spec:N *
\cs_replacement_spec:c *

New: 2019-02-27

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N (token)

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1, ,y#2 in the input stream. If the (token) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

23

\use:
\use:
\use:
\use:

n *
nn *
nnn *
nnnn %

\use:n {(group:)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {{groups)}

\use:nnnn {(group:)} {{group:)} {(groups)} {(groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

TEXhackers note: The \use:n function is equivalent to I¥TEX 2¢’s \@firstofone.

24

\use_i:nn {(arg:i)} {(arg:)}

\use_i:nnn {(argi)} {(arg:)} {(args:)}

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

\use_i:nnnnn {(argi)} {(arg:)} {(args)} {(args)} {(args)}

\use_i:nnnnnn {(arg:)} {(argz:)} {(args)} {(args)} {{args)} {(arge)}

\use_i:nnnnnnn {(argi)} {(args)} {(args)} {({args)} {({args)} {({args)} {(argr)}
\use_i:nnnnnnnn {(arg:)} {(arg:)} {({args)} {(args)} {({args)} {(arges)} {({argr)}
{(args)}

\use_i:nnnnnnnnn {(arg:)} {(arge)} {(args)} {(args)} {(args)} {(args)} {(arg:)}
{(args)} {(argo)}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn
\use_ii:nn
\use_i:nnn
\use_ii:nnn
\use_iii:nnn
\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn
\use_i :nnnnn
\use_ii:nnnnn
\use_iii:nnnnn
\use_iv:nnnnn
\use_v:nnnnn
\use_i:nnnnnn
\use_ii:nnnnnn
\use_iii:nnnnnn
\use_iv:nnnnnn
\use_v:nnnnnn
\use_vi:nnnnnn
\use_i :nnnnnnn
\use_ii:nnnnnnn
\use_iii:nnnnnnn
\use_iv:nnnnnnn
\use_v:nnnnnnn
\use_vi:nnnnnnn
\use_vii:nnnnnnn
\use_i :nnnnnnnn
\use_ii:nnnnnnnn
\use_iii:nnnnnnnn
\use_iv:nnnnnnnn
\use_v:nnnnnnnn
\use_vi:nnnnnnnn
\use_vii:nnnnnnnn
\use_viii:nnnnnnnn
\use_i :nnnnnnnnn
\use_ii:nnnnnnnnn
\use_iii:nnnnnnnnn
\use_iv:nnnnnnnnn
\use_v:nnnnnnnnn
\use_vi:nnnnnnnnn
\use_vii:nnnnnnnnn
\use_viii:nnnnnnnnn
\use_ix:nnnnnnnnn

X X X > b b ot Ot XX X X > b b o X XX XX X > b b O O XX XX X > F b o X X X X X ok o o X X X X

25

\use_i_ii:nnn * \use_i_ii:nnn {(arg:)} {(arge)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn % \use_ii_i:nn {(argi)} {(arg:)}

New: 2019-06-02

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n

nn

nnn

nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn
nnnnnnnnn

*

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(group:)}

* These functions absorb between one and nine groups from the input stream, leaving

*
*
*
*
*
*

\use:e

Updated: 2023-07-05

*

New: 2018-06-18

nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to KTEX 2¢’s \@gobble, \@gobbletwo, etc.

\use:e {(expandable tokens)}

Fully expands the (token 1ist) in an e-type manner, in which parameter character
(usually #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q _nil:w * \use_none_delimit_by_q_nil:w <balanced text) \q_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w <balanced text> \q_stop
\use_none_delimit_by_q_recursion_stop:w x \use_none_delimit_by_q_recursion_stop:w (balanced text)

\g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in
the function name, leaving nothing in the input stream.

26

\use_i_delimit_by_q_nil:nw

* \use_i_delimit_by_qg_nil:nw {(inserted tokens)} (balanced text)

\use_i_delimit_by_q_stop:nw * \q_nil
\use_i_delimit_by_q_recursion_stop:nw x \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6

Predicates and conditionals

I4TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code).
These arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative
can operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

27

\cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

\if_true:
\if_false:
\else:

\fi:
\reverse_if:N

L D S

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and ETEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)

\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are
the same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or an-
other control sequence type). Any definition of (control sequence) other than \relax
evaluates as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false
if the (control sequence) currently exists (as defined by \cs_if_exist:NTF).

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_, except for \if:w.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false
code). \reverse_if:N reverses any two-way primitive conditional. \else: and \fi:
delimit the branches of the conditional. The function \or: is documented in I3int and
used in case switches.

TEXhackers note: \if_true: and \if_false: are equivalent to their corresponding TEX
primitive conditionals \iftrue and \iffalse; \else: and \fi: are the TEX primitives \else
and \fi; \reverse_if:N is the e-TEX primitive \unless.

28

\if_meaning:w * \if_meaning:w (arg:) (arg:) (true code) \else: (false code) \fi:

\if:w

*

\if _meaning:w executes (true code) when (arg;) and (args) are the same, otherwise
it executes (false code). (arg;) and (args) could be functions, variables, tokens; in all
cases the unexpanded definitions are compared.

TEXhackers note: This is the TEX primitive \ifx.

\if:w (token(s)) (true code) \else: (false code) \fi:

\if_charcode:w x \if_catcode:w (token(s)) (true code) \else: (false code) \fi:

\if _catcode:w

*

\if_cs_exist:N x
\if _cs_exist:w *

\if_mode_horizontal:
\if_mode_vertical:
\if_mode_math:
\if_mode_inner:

Ll

\if_charcode:w is an alternative name for \if :w. These conditionals expand (token(s))
until two unexpandable tokens (token;) and (tokensy) are found; any further tokens up
to the next unbalanced \else: are the true branch, ending with (true code). It is
executed if the condition is fulfilled, otherwise (false code) is executed. You can omit
\else: when just in front of \fi: and you can nest \if...\else:...\fi: constructs
inside the true branch or the (false code). With \exp_not:N, you can prevent the
expansion of a token.

\if_catcode:w tests if (token;) and (tokens) have the same category code whereas
\if:w and \if charcode:w test if they have the same character code.

TEXhackers note: \if:w and \if_charcode:w are both the TEX primitive \if. \if_-
catcode:w is the TEX primitive \ifcat.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are the TEX primitives \ifdefined and \ifcsname.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code).
Similar for the other functions.

TEXhackers note: These are the TEX primitives \ifhmode, \ifvmode, \ifmmode,
and \ifinner.

29

\mode_leave_vertical:

New: 2017-07-04

\debug_on:n

\debug_off:n

New: 2017-07-16

Updated: 2023-05-23

\debug_suspend:
\debug_resume:

New: 2017-11-28

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the KTEX 2¢
\leavevmode approach, no box is used by the method implemented here.

4.8 Debugging support

\debug_on:n { (comma-separated list) }
\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (1ist) are

e check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes deprecated commands produce errors;
e log-functions that logs function definitions and variable declarations;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors. These pairs of commands can be nested. This can be used around pieces of code
that are known to fail checks, if such failures should be ignored. See for instance I3cctab
and I3coffins.

30

Chapter 5

The 13expan module
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

31

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

32

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control
sequence) for IWTEX3 code-level macros. The (parent control sequence) is first
separated into the (base name) and (original argument specifier). The comma-
separated list of (variant argument specifiers) is then used to define variants of the
(original argument specifier) if these are not already defined; entries which corre-
spond to existing functions are silently ignored. For each (variant) given, a function is
created that expands its arguments as detailed and passes them to the (parent control
sequence). So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the (parent control sequence) is al-
ready defined. (This is only enforced if debugging support check-declarations is en-
abled.) If the (parent control sequence) is protected or if the (variant) involves any
x argument, then the (variant control sequence) is also protected. The (variant)
is created globally, as is any \exp_args:N(variant) function needed to carry out the
expansion. There is no need to re-apply \cs_generate_variant:Nn after changing the
definition of the parent function: the variant will always use the current definition of
the parent. Providing variants repeatedly is safe as \cs_generate_variant:Nn will only
create new definitions if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N, n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases
where both an n-type parent and an N-type parent exist, such as for \tl_count:n and
\tl_count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

33

\exp_args_generate:n \exp_args_generate:n {(variant argument specifiers)}

New: 2018-04-04 Defines \exp_args:N(variant) functions for each (variant) given in the comma list
Updated: 2019-02-08 {(wariant argument specifiers)}. Each (variant) should consist of the letters N, c, n,
V, v, o, £, e, x, p and the resulting function is protected if the letter x appears in
the (variant). This is only useful for cases where \cs_generate_variant:Nn is not

applicable.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside e or x expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

34

at the cost of being protected for x-type. If you use f type expansion in conditional
processing then you should stick to using TF type functions only as the expansion does
not finish any \if... \fi: itself!

It is important to note that both £- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants
are used numerous times in a document) the following considerations apply because the
speed of internal functions that expand the arguments of a base function depend on what
needs doing with each argument and where this happens in the list of arguments:

o for fastest processing any c-type arguments should come first followed by all other
modified arguments;

o unchanged N-type args that appear before modified ones have a small performance
hit;

o unchanged n-type args that appear before modified ones have a relative larger
performance hit.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

35

\exp_args:Nc *
\exp_args:cc *

\exp_args:No *

\exp_args:NV *

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf =

\exp_args:Nx

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described
for the (tokens).

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than
one argument: all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. This control sequence should be the name of a (variable). The content of the
(variable) are recovered and placed inside braces into the input stream after reinsertion
of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and
exhaustively expands the (tokens). The result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and
exhaustively expands the (tokens). The result is inserted in braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one
argument: all others are left unchanged.

36

\exp_args:NNc
\exp_args:NNo
\exp_args:NNV
\exp_args:NNv
\exp_args:NNe

\exp_args:Ncc
\exp_args:Nco
\exp_args:NcV
\exp_args:Ncv
\exp_args:Ncf
\exp_args:NVV

*
*
*
*
*
\exp_args:NNf *
*
*
*
*
*
*

Updated: 2018-05-15

\exp_args:Nnc
\exp_args:Nno
\exp_args:NnV
\exp_args:Nnv
\exp_args:Nne
\exp_args:Nnf
\exp_args:Noc
\exp_args:Noo
\exp_args:Nof
\exp_args:NVo
\exp_args:Nfo
\exp_args:Nff
\exp_args:Nee

Ll . S D S R . S .

Updated: 2018-05-15

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
NNNe
Nccc
NcNc
NcNo
Ncco

Ll D D .

5.5 Manipulating two arguments

\exp_args:NNc (token;) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenss)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on the
input stream, followed by the expansion of the second and third arguments.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokens) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

37

\exp_args:NNcf
\exp_args:NNno
\exp_args:NNnV
\exp_args:NNoo
\exp_args:NNVV
\exp_args:Ncno
\exp_args:NcnV
\exp_args:Ncoo
\exp_args:NcVV
\exp_args:Nnnc
\exp_args:Nnno
\exp_args:Nnnf
\exp_args:Nnff
\exp_args:Nooo
\exp_args:Noof
\exp_args:Nffo
\exp_args:Neee

X X X > b ot ot X X X X o ok o Xt X

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx
NNnx
NNox
Nccx
Ncnx
Nnnx
Nnox
Noox

New: 2015-08-12

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

38

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NN
Nco
NcV
Nno
Nnf
Noo
Nfo
NNNo
NNNV
NNNf
NnNo

X X X X > ok b O X X X X > o ot

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_last_unbraced:Nx

5.7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokensz)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (token;) (tokens)

Carries out a single expansion of (tokens) (which may consume arguments) prior to the
expansion of (token;). If (tokens) has no expansion (for example, if it is a character)
then it is left unchanged. It is important to notice that (token;) may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX cat-
egory codes). Unless specifically required this should be avoided: expansion should be
carried out using an appropriate argument specifier variant or the appropriate \exp_-
args:N(variant) function.

TEXhackers note: This is the TEX primitive \expandafter.

39

\exp_not:N *

\exp_not:c *

\exp_not:n *

\exp_not:o *

\exp_not:V *

\exp_not:v *

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded, for
example an e-type or x-type argument or the first token in an o-type or f-type argument.

TEXhackers note: This is the TEX primitive \noexpand. It only prevents expansion. At
the beginning of an f-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e-type or x-type argument. In all other cases
the (tokens) continue to be expanded, for example in the input stream or in other types
of arguments such as c, £, v. The argument of \exp_not:n must be surrounded by
braces.

TEXhackers note: This is the e-TEX primitive \unexpanded. In an e-expanding definition
(\cs_new:Npe), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1, and \exp_not:n {#} is equivalent to #, namely it inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in e-type or x-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in
e-type or x-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a con-
trol sequence which should be a (variable) name. The content of the (variable)
is recovered, and further expansion in e-type or x-type arguments is prevented using
\exp_not:n.

40

\exp_not:e *

\exp_not:f *

\exp_stop_f: *

Updated: 2011-06-03

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e-type or x-type arguments
using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space
it is removed). Expansion then stops, and the result of the expansion (including any
tokens which were not expanded) is protected from further expansion in e-type or x-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an e-type or x-type expansion, it retains its form, but when
typeset it produces the underlying space (1,).

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens
are encountered in that place!

41

\exp:w *
\exp_end: *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w (expandable tokens) \exp_end:

Expands (expandable-tokens) until reaching \exp_end: at which point expansion
stops. The full expansion of (expandable tokens) has to be empty. If any token in
(expandable tokens) or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end: will be misin-
terpreted later on.?

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g.,

you may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (expandable tokens), but this should
not be relied upon.

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (expandable-tokens) until reaching \exp_end_continue_f:w at which point
expansion continues as an f-type expansion expanding (further-tokens) until an un-
expandable token is encountered (or the f-type expansion is explicitly terminated by
\exp_stop_£f:). As with all f-type expansions a space ending the expansion gets re-
moved.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.*

In typical use cases (expandable-tokens) contains no tokens at all, e.g., you will
see code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

3Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

42

\exp:w * \exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

\exp_end_continue f:nw % The difference to \exp_end_continue_f:w is that we first we pick up an argument which

New: 2015-08-23 is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

5.10 Internal functions

\::n \cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }
t N Internal forms for the base expansion types. These names do not conform to the general
\: IC) ETEX3 approach as this makes them more readily visible in the log and so forth. They
\ ;0 should not be used outside this module.
\::e
\::f
\::x
\::v
\::V
\ “ e
::o_unbraced \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced
::V_unbraced

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general I2TEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

P

4In this particular case you may get a character into the output as well as an error message.

43

Chapter 6

The 13sort module
Sorting functions

6.1 Controlling sorting

ETEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

44

\sort_return_same: \seq_sort:Nn (seq Var)
\sort_return_swapped: { ... \sort_return_same: or \sort_return_swapped: ... }

New: 2017-02-06 Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

45

Chapter 7

The 13tl-analysis module
Analysing token lists

This module provides functions that are particularly useful in the I3regex module for
mapping through a token list one (token) at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in I3token finds tokens in the input stream instead. In both cases the user
provides (inline code) that receives three arguments for each (token):

o (tokens), which both o-expand and e/x-expand to the (token). The detailed form
of (tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if
it is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the
(token) (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "(catcode).

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:N \tl_analysis_show:n {(token list)}
\tl_analysis_show:n \tl_analysis_log:n {(token list)}
\tl_analysis_log:N

, Displays to the terminal (or log) the detailed decomposition of the (token list) into to-
\tl_analysis_log:n

kens, showing the category code of each character token, the meaning of control sequences
New: 2021-05-11 and active characters, and the value of registers.

\tl_analysis_map_inline:nn \tl_analysis_map_inline:nn {(token list)} {(inline function)}
\tl_analysis_map_inline:Nn

Applies the (inline function) to each individual (token) in the (token list). The

New: 2018-04-09 (inline function) receives three arguments as explained above. As all other mappings
Updated: 2022-03-26 the mapping is done at the current group level, i.e. any local assignments made by the
(inline function) remain in effect after the loop.

46

Chapter 8

The 13regex module
Regular expressions in TEpX

The |13regex module provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \1_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \1_foo_regex
\regex_set:Nn \1_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \1_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] . *), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

47

8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

[abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

[A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

\c{[A-Za-z] *} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]1?\d+ matches an explicit integer with at most one sign.

I\N+H\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

I\NH\-\UT* (\d@+1\d*\ .\d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

O\H\-\T* (\d+ I \d*x\ . \d+) _*x ((?i)pt |in| [cemlm|ex| [bslp| [dnld| [pcnlc) \ *
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

O\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\L*ke [\+\-_I*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

\+\-\1* (\d+|\cC.) \L* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
NN\ O NG\ * CON\=%/] [\+\=-\ (1 *\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

48

8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

o mnon-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(; \), \?, \.; \");

« spaces should always be escaped (even in character classes);

« any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regex)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character properties.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \~"I]: space and tab.

\s Any space character, equivalent to [\ \""I\""J\""L\""M].

49

\v Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.
\H Any token not matched by \h.
\N Any token other than the \n character (hex 0A).
\S Any token not matched by \s.
\V Any token not matched by \v.
\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
[x-y] Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:~(name):] Negative POSIX character class.

For instance, [a-ogq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is 1 then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).
? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.

+ 1 or more, greedy.

50

+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|BIC Either one of A, B, or C, investigating A first.
(...) Capturing group.
(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
e B for begin-group tokens;

e E for end-group tokens;

o1

e M for math shift;
o T for alignment tab tokens;
o P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
« S for spaces;
e L for letters;
e 0 for others; and
o A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \c0(abc) matches abc where each character has category other.’

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LS0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [*0]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches abxcd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(var name)} matches the exact contents (both character codes and cate-
gory codes) of the variable \(var name), which are obtained by applying \exp_not:v
{(var name)} at the time the regular expression is compiled. Within a \c{. ..} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{1_tmpa_regex}D matches the tokens A and

5This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\c0(?7:abc).

52

D separated by something that matches the regular expression \1_tmpa_regex. This
behaves as if a non-capturing group were surrounding \1_tmpa_regex, and any group
contained in \1_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \1_tmpa_regex has value B|C, then A\ur{1_tmpa_regex}D is equiv-
alent to A(?7:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \1_-
mymodule_BC_t1 contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_t1} D }
\regex_show:n{ AB | CD }

8.1.6 Miscellaneous

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A-Z and a—z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?7-i). For instance, in
(71) (a(?-1)blc)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i) [\?7-B] is equivalent to [\7@ABab]
(and differs from the much larger class [\?-b]), and (?i) [Taeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?7i)\u{l_foo_tl1}\d\d[[:1lower:]].

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

e \O0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

53

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c(category)(character) (see below);
o \u{(tl var n