Metrics for Eclipse MicroProfile

Heiko W. Rupp, Raymond Lam, David Chan, Don Bourne, Antonin Stefanutti,
Brennan Nichyporuk, Mike Croft, Werner Keil, Jan Martiska

Version 2.3, February 06, 2020

Table of Contents

1. MicroProfile Metrics
2. Introduction
2.1. Motivation
2.2. Difference to health checks
3. Architecture
3.1. Metrics Setup
3.1.1. Scopes
Required Base metrics
Application metrics
Vendor specific Metrics
3.1.2. Tags
3.1.3. Metadata
3.2. Metric Registry
3.2.1. MetriclD
3.2.2. Reusing Metrics
3.2.3. Metrics and CDI scopes
3.3. Exposing metrics via REST API
3.4. Usage of MicroProfile Metrics in application servers with multiple applications
3.4.1. Implementation notes:
4. REST endpoints
4.1. JSON format
4.1.1. Translation rules for metric names and handling of tags
4.1.2. Gauge JSON Format
4.1.3. Counter JSON Format
4.1.4. Concurrent Gauge JSON Format
4.1.5. Meter JSON Format
4.1.6. Histogram JSON Format
4.1.7. Timer JSON Format
4.1.8. Simple Timer JSON Format
4.1.9. Metadata
4.2. OpenMetrics format
4.2.1. Translation rules for metric names
4.2.2. Handling of tags
4.2.3. Handling of units
4.2.4. Gauge OpenMetrics Text Format
4.2.5. Counter OpenMetrics Text Format
4.2.6. Concurrent Gauge OpenMetrics Text Format

4.2.7. Meter OpenMetrics Text Format

o o NN N U DD DWW LB W WO PRP

N N M MNP DYDMPRP R P RPRP PR R PR R R R
W W W NN PP PO VU 0o o oo B B N NN O O

4.2.8. Histogram OpenMetrics Text Format
4.2.9. Timer OpenMetrics Text Format
4.2.10. Simple Timer OpenMetrics Text Format
4.3. Security
5. Required Metrics
5.1. General JVM Stats
5.2. Thread JVM Stats
5.3. Thread Pool Stats
5.4. ClassLoading JVM Stats
5.5. Operating System
5.6. (Optional) REST
6. Application Metrics Programming Model
6.1. Responsibility of the MicroProfile Metrics implementation
6.2. Base Package
6.3. Annotations
6.3.1. Fields
6.3.2. Annotated Naming Convention
6.3.3. @Counted
CONSTRUCTOR
METHOD
TYPE
6.3.4. @ConcurrentGauge
CONSTRUCTOR
METHOD
TYPE
6.3.5. @Gauge
METHOD
6.3.6. @Metered
CONSTRUCTOR
METHOD
TYPE
6.3.7. @SimplyTimed
CONSTRUCTOR
METHOD
TYPE
6.3.8. @Timed
CONSTRUCTOR
METHOD
TYPE
6.3.9. @Metric
FIELD

24
25
27
28
29
29
31
32
32
33
34
36
36
37
37
39
39
40
41
41
41
41
42
42
42
43
43
43
44
44
44
44
45
45
45
46
46
46
46
a7
a1

METHOD
PARAMETER
6.4. Registering metrics dynamically
6.4.1. List of methods of the MetricRegistry related to registering new metrics
6.5. Unregistering metrics
6.5.1. List of methods of the MetricRegistry related to removing metrics
6.6. Metric Registries
6.6.1. @RegistryType
6.6.2. Application Metric Registry
6.6.3. Base Metric Registry
6.6.4. Vendor Metric Registry
6.6.5. Metadata
7. Appendix
7.1. Alternatives considered
7.2. References
7.3. Example configuration format for base and vendor-specific data
7.4. Example Metric Registry Factory
7.5. Migration hints
7.5.1. To version 2.0
@Counted
Release Notes
8. Changesin 2.3
8.1. API/SPI Changes
8.2. Functional Changes
8.3. Specification Changes
8.4. TCK enhancement
9. Changesin 2.2
9.1. API/SPI Changes
9.2. Functional Changes
9.3. Specification Changes
10. Changesin 2.1
10.1. API/SPI Changes
10.2. Functional Changes
10.3. Specification Changes
10.4. TCK enhancement
10.5. Miscellaneous
11. Changesin 2.0
11.1. API/SPI Changes
11.2. Functional Changes
11.3. Specification Changes
12. Changesin 1.1

48
48
48
49
50
50
50
50
51
51
51
51
53
53
53
53
54
55
55
55
57
58
58
58
58
58
59
59
59
59
60
60
60
60
60
60
61
61
61
62
64

12.1. API/SPI Changes
12.2. Functional Changes
12.3. Specification Changes
12.4. TCK enhancement

64
64
64
64

Chapter 1. MicroProfile Metrics

Specification: Metrics for Eclipse MicroProfile
Version: 2.3

Status: Final

Release: February 06, 2020

Copyright (c) 2016-2019 Eclipse Microprofile Contributors:
Heiko W. Rupp, Raymond Lam, David Chan, Don Bourne, Antonin Stefanutti, Brennan
Nichyporuk, Mike Croft, Werner Keil, Jan Martiska

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

E http://www.apache.org/ licenses/ LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Chapter 2. Introduction

To ensure reliable operation of software it is necessary to monitor essential system parameters.
This enhancement proposes the addition of well-known monitoring endpoints and metrics for each
process adhering to the Eclipse MicroProfile standard.

This proposal does not talk about health checks. There is a separate specification for Health Checks .

2.1. Motivation

Reliable service of a platform needs monitoring. There is already JMX as standard to expose
metrics, but remote-JMX is not easy to deal with and especially does not fit well in a polyglot
environment where other services are not running on the JVM. To enable monitoring in an easy
fashion it is necessary that all MicroProfile implementations follow a certain standard with respect

to (base) API path, data types involved, always available metrics and return codes used.

2.2. Difference to health checks

Health checks are primarily targeted at a quick yes/no response to the question "Is my application
still running ok?". Modern systems that schedule the starting of applications (e.g. Kubernetes) use
this information to restart the application if the answer is 'no'.

Metrics on the other hand can help to determine the health. Beyond this they serve to pinpoint

issues, provide long term trend data for capacity planning and pro-active discovery of issues (e.g.
disk usage growing without bounds). Metrics can also help those scheduling systems decide when
to scale the application to run on more or fewer machines.

https://github.com/eclipse/microprofile-health

Chapter 3. Architecture

This chapter describes the architectural overview of how metrics are setup, stored and exposed for
consumption. This chapter also lists the various scopes of metrics.

See section Required Metrics for more information regarding metrics that are required for each
vendor.

See section Application Metrics Programming Model for more information regarding the
application metrics programming model.

3.1. Metrics Setup

Metrics that are exposed need to be configured in the server. On top of the pure metrics, metadata
needs to be provided.

The following three sets of sub-resource (scopes) are exposed.

¥ base: metrics that all MicroProfile vendors have to provide
¥ vendor: vendor specific metrics (optional)

¥ application: application-specific metrics (optional)

It is expected that a future version of this specification will also have a sub-
resource for integrations with other specifications of MicroProfile.

3.1.1. Scopes

Required Base metrics

Required base metrics describe a set of metrics that all MicroProfile-compliant servers have to
provide. Each vendor can implement the set-up of the metrics in the base scope in a vendor-specific
way. The metrics can be hard coded into the server or read from a configuration file or supplied via

the Java-API described in Application Metrics Programming Model . The Appendix shows a possible
data format for such a configuration. The configuration and set up of the base scope is thus an
implementation detail and is not expected to be portable across vendors.

Section Required Metrics lists the required metrics. This list also includes a few items marked as
optional. These are listed here as they are dependent on the underlying JVM and not the server and
thus fit better in base scope than the vendor one.

The optional REST metrics are listed as base metrics as they are expected to be portable between
different implementations. If the implementation provides REST metrics,
itEisEupEtoEtheEimplementationEtoEdecideEhowEtoEenableEtheERESTEmetrics.

Required base metrics are exposed under /metrics/base .

The base scope is used for, and only for, any metrics that are defined in MicroProfile specifications.
Metrics in the base scope are intended to be portable between different MicroProfile-compatible

runtimes.

Application metrics

Application specific metrics can not be baked into the server as they are supposed to be provided
by the application at runtime. Therefore a Java API is provided. Application specific metrics are
supposed to be portable to other MicroProfile implementations. That means that an application
written to this specification which exposes metrics, can expose the same metrics on a different
compliant server without change.

Details of this Java API are described in Application Metrics Programming Model

Application specific metrics are exposed under /metrics/application

Vendor specific Metrics

It is possible for MicroProfile server implementors to supply their specific metrics data on top of
the basic set of required metrics. Vendor specific metrics are exposed under /metrics/vendor .

Examples for vendor specific data could be metrics like:

¥ OSGi statistics if the MicroProfile-enabled container internally runs on top of OSGi.
¥ Statistics of some internal caching modules

¥ Any other metrics that are generated by application frameworks, but not directly declared in
application code, if these metrics are not based on any specification and therefore not expected
to be portable between different runtimes that might support the same application framework.

Vendor specific metrics are not supposed to be portable between different implementations of
MicroProfile servers, even if they are compliant with the same version of this specification.

3.1.2. Tags

Tags (or labels) play an important role in modern microservices and microservice scheduling
systems (like e.g. Kubernetes). Application code can run on any node and can be re-scheduled to a
different node at any time. Each container in such an environment gets its own ID; when the
container is stopped and a new one started for the same image, it will get a different id. The
classical mapping of host/node and application runtime on it, therefore no longer works.

Tags have taken over the role to, for example, identify an application (app=myShgpthe tier inside
the application (tier=database or tier=app_server) and also the node/container id. Metric value
aggregation can then work over label queries (Give me the API hit count for app=myShop &&
tier=app_server).

In MicroProfile Metrics, tags add an additional dimension to metrics that share a common basis.
For example, a metric named carCount can be further differentiated by the car type (sedan, SUV,
coupe, and etc) and the colour (red, blue, white, black, and etc). Rather than incorporating this in
the metric name, tags can be used to capture this information in separate metrics.

carCount{type=sedan,colour=red}
carCount{type=sedan,colour=blue}
carCount{type=suv,colour=red}
carCount{type=coupe,colour=blue}

For portability reasons, the key name for the tag must match the regex [a-zA-Z_][a-zA-Z0-9_]*
(Ascii alphabet, numbers and underscore). If an illegal character is used, the implementation must
throw an lllegalArgumentException . If a duplicate tag is used, the last occurrence of the tag is used.

The tag value may contain any UTF-8 encoded character.

The REST endpoints provided by MicroProfile Metrics have different reserved
characters based on the format. The characters are only escaped as needed when
exposed through the REST endpoints. See REST endpoints for more information on
the reserved characters.

Tags can be supplied in two ways:

¥ At the level of a metric as described in Application Metrics Programming Model

¥ At the application server level by using MicroProfile Config and setting a configuration property
of the name mp.metrics.tags . The implementation MUST make sure that an implementation of
MicroProfile Config version at least 1.3 is available at runtime. If it is supplied as an
environment variable rather than system property, it can be named MP_METRICS_TAmbwill be
picked up too.

I Tag values set through mp.metrics.tags MUST escape equal symbols =and commas , with a

backslash \

Set up global tags via environment variable

export MP_METRICS_TAGS=app=shop,tier=integration,special=deli\=ver\,y

Global tags and tags registered with the metric are included in the output returned from the REST
API.

In application servers with multiple applications deployed, there is one reserved

tag name: _app which serves for distinguishing metrics from different applications

and must not be used for any other purpose. For details, see section Usage of
MicroProfile Metrics in application servers with multiple applications

3.1.3. Metadata

Metadata can be specified for metrics in any scope. For base metrics, metadata must be provided by
the implementation. Metadata is exposed by the REST handler.

https://github.com/eclipse/microprofile-config

While technically it is possible to expose metrics without (some) of the metadata, it
helps tooling and also operators when correct metadata is provided, as this helps
getting a context and an explanation of the metric.

The Metadata:

¥ name: The name of the metric.
¥ unit: a fixed set of string units
¥ type:
I counter: a monotonically increasing numeric value (e.g. total number of requests received).
! concurrent gauge: an incrementally increasing or decreasing numeric value (e.g. number of

parallel invocations of a method).

This type exposes three values: current count, highest count within the previous full minute
and lowest count within the previous full minute.

Full minute is the minute from second 0O to just before second 0 on the next minute (eg.
from [10:46:00-10:46:59.99999999]).

I gauge: a metric that is sampled to obtain its value (e.g. cpu temperature or disk usage).

! meter: a metric which tracks mean throughput and one-, five-, and fifteen-minute
exponentially-weighted moving average throughput.

! histogram: a metric which calculates the distribution of a value.

I timer: a metric which aggregates timing durations and provides duration statistics, plus
throughput statistics.

I simple timer: a lightweight alternative to the timer metric that only tracks the elapsed time
duration and invocation counts. The simple timer may be preferrable over the timer when
used with Prometheus as the statistical calculations can be deferred to Prometheus using the
simple timerOs available values.

¥ description (optional): A human readable description of the metric.

¥ displayName (optional): A human readable name of the metric for display purposes if the
metric name is not human readable. This could e.g. be the case when the metric name is a uuid.

¥ reusable (optional): If setto true , then it is allowed to register a metric multiple times under the
same MetriclD . Note that all such instances must set reusable to true . Default is true for metrics
created programmatically, false for metrics declared using annotations. See Reusing Metrics for
more details.

Metadata must not change over the lifetime of a process (i.e. it is not allowed to return the units as
seconds in one retrieval and as hours in a subsequent one). The reason behind it is that e.g. a
monitoring agent on Kubernetes may read the metadata once it sees the new container and store it.
It may not periodically re-query the process for the metadata.

In fact, metadata should not change during the life-time of the whole container

image or an application, as all containers spawned from it will be "the same" and
form part of an app, where it would be confusing in an overall view if the same
metric has different metadata.

3.2. Metric Registry

The MetricRegistry stores the metrics and metadata information. There is one MetricRegistry
instance for each of the scopes listed in Scopes.

Metrics can be added to or retrieved from the registry either using the @Metric annotation (see
Metrics Annotations) or using the MetricRegistry object directly.

A metric is uniquely identified by the MetricRegistry if the MetricID associated with the metric is
unique. That is to say, there are no other metrics with the same combination of metric name and
tags. However, all metrics of the same name must be of the same type otherwise an
lllegalArgumentException will be thrown. This exception will be thrown during registration.

The metadata information is registered under a unique metric name and is immutable. All metrics
of the same name must be registered with the same metadata information otherwise an
"lllegalArgumentException” will be thrown. This exception will be thrown during registration.

3.2.1. MetriclD

The MetricID consists of the metricOs name and tags (if supplied). This is used by the MetricRegistry
to uniquely identify a metric and its corresponding metadata.

The MetriclD:

¥ name: The name of the metric.

¥ tags (optional): A list of Tag objects. See also Tags.

3.2.2. Reusing Metrics

For metrics declared using annotations, by default it is not allowed to register more than one metric
under a certain name and tags combination in a scope. This is done to prevent hard to spot copy &
paste errors, where for example all methods of a JAX-RS class are marked with
@Timed(name="myApp", absolute=true)

If this behaviour is required, then it is possible to mark all such instances as reusable by passing the
respective flag in the Annotation. Gauges are never reusable.

Reusability concepts are generally meant to apply only to annotated metrics. These
restrictions are generally not placed on programmatically registered metrics,
unless a metric is programmatically registered with the reusable flag set to false
(which has to be set explicitly).

For metrics created programmatically (by calling methods of the MetricRegistry), reusing is allowed

by default, so multiple calls retrieving an instance of a metric from the registry will return the same
metric object so that the object can be reused in multiple places in the applicationOs codebase, and
all calls that update the metricOs value will update the same metric instance.

The implementation must throw an lllegalArgumentException if it detects multiple annotations
referring to the same metric without being marked reusable.

Only metrics of the same type can be reused under the same MetriclD . Trying to reuse a name for
different types will result in an lllegalArgumentException . All metrics under the same name must
also have exactly the same metadata.

If you want to re-use a MetriclD, then you need to also explicitly set the namefield
OR set absolute to true and have multiple methods annotated as metric that have

the same method name and tags.

Example of reused counters

E (name= "countM€, absolute = true, reusable = true, tags={"tagl=valuel"})
E public void countMed) { }
E (name= "countMé€, absolute = true, reusable = true, tags={"tagl=valuel"})
E public void countMeB) { }

In the above examples both countMeA() and countMeB() will share a single Counter with registered
name countMeand the same tags in application scope.

3.2.3. Metrics and CDI scopes

Depending on CDI bean scope, there may be multiple instances of the CDI bean created over the
lifecycle of an application. In these cases, where multiple bean instances exist, only one instance of

the corresponding metric will be created (per annotated method), and updates to that metric will be
combined from all related invocations regardless of the bean instance where the invocation
happens. For example, calls to a method annotated with @Counteavill increase the value of the
same counter no matter which bean instance is the one where the counted method is being
invoked. Concurrent gauges will watch the number of parallel invocations of a method even if the
invocations are on different instances.

The only exception from this are gauges (not concurrent gauges), which donOt support multiple
instances of the underlying bean to be created, because in that case it would not be clear which
instance should be used for obtaining the gauge value. For this reason, gauges should only be used

with beans that create only one instance, in CDI terms this means @ApplicationScoped and
@Singleton beans. The implementation may employ validation checks that throw an error eagerly

when it is detected that there isa @Gaugen a bean that will probably have multiple instances.

3.3. Exposing metrics via REST API

Data is exposed via REST over HTTP under the /metrics base path in two different data formats for
GETrequests:

¥ JSON format - used when the HTTP Accept header best matches application/json

¥ OpenMetrics text format - used when the HTTP Accept header best matches text/plain or when
Accept header would equally accept both text/plain and application/json and there is no other
higher precedence format. This format is also returned when no media type is requested (i.e. no
Accept header is provided in the request)

Implementations and/or future versions of this specification may allow for more
export formats that are triggered by their specific media type. The OpenMetrics
text format will stay as fall-back.

Formats are detailed below.
Data access must honour the HTTP response codes, especially

¥ 200 for successful retrieval of an object

¥ 204 when retrieving a subtree that would exist, but has no content. E.g. when the application-
specific subtree has no application specific metrics defined.

¥ 404 if a directly-addressed item does not exist. This may be a non-existing sub-tree or non-
existing object

¥ 406 if the HTTP Accept Header in the request cannot be handled by the server.

¥ 500 to indicate that a request failed due to "bad health". The body SHOULD contain details if
possible { "details"; <text>}

The APl MUST NOT return a 500 Internal Server Error code to represent a non-existing resource.

Table 1. Supported REST endpoints

Endpoint Request Supported Description
Type Formats
Imetrics GET JSON, Returns all registered metrics
OpenMetrics
/metrics/<scope> GET JSON, Returns metrics registered for the

OpenMetrics respective scope. Scopes are listed in
Metrics Setup

Imetrics/<scope>/<metric_n GET JSON, Returns the metric that matches the
ame=> OpenMetrics metric name for the respective scope
Imetrics OPTIONS JSON Returns all registered metrics' metadata
/metrics/<scope> OPTIONS JSON Returns metrics' metadata registered for

the respective scope. Scopes are listed in
Metrics Setup

Imetrics/<scope>/<metric_ N OPTIONS JSON Returns the metricOs metadata that
Bz matches the metric name for the
respective scope

| The implementation must return a 406 response code if the requestOs HTTP Accept
. header for an OPTIONS request does not match application/json

3.4. Usage of MicroProfile Metrics in application
servers with multiple applications

Even though multi-app servers are generally outside the scope of MicroProfile, this section
describes recommendations how such application servers should behave if they want to support
MicroProfile Metrics.

Metrics from all applications and scopes should be available under a single REST endpoint ending
with /metrics similarly as in case of single-application deployments (microservices).

To help distinguish between metrics pertaining to each deployed application, a tag named _app
should be appended to each metric. Its value should be equal to the context root of the web
application to which the metric belongs. For example, if a deployment is available under the [cars
context root, each metric created by this deployment will contain an additional tag named _app
with a value of /cars . If the application server allows using metrics in JAR deployments, which have

no web context, the name of the JAR archive (including the Jar suffix) should be used. If such JAR
is a module of an EAR application, the value of the ~ _apptag should be ear_name#jar_name

This is an example JSON output from an application server that has applications under /appl and

/app2, both of which have a counter metric named requestCount:

{
E "requestCount;_app=/appl" : 198,
E "requestCount;_app=/app2" : 320
}

The value of the _apptag should be passed by the application server to the application via a
MicroProfile Config property named mp.metrics.appNamelt should be possible to override this value
by bundling the file META-INF/microprofile-config.properties within the application archive and
setting a custom value for the property mp.metrics.appNamaénside it.

It is allowed for application servers to choose to not add the _apptag at all, but in that case, metrics
from two applications on one server can clash as no differentiator (by application) is given.

There should be a single MetricRegistry instance shared between all applications to prevent
unexpected clashes when merging the contents of different registries while responding to metric
export requests. It is up to the application server whether it will allow sharing of metrics between
different applications (for example, if thereOs a reusable metric in one application, another might
want to reuse it).

3.4.1. Implementation notes:

Constructors of the MetriclD class from the API code already handle adding the _app tag
automatically when they detect that there is a property hamed mp.metrics.appNameavailable from
the org.eclipse.microprofile.config.Config instance available in the current context. If no such
property exists or if the value is empty, no tag will be appended.

Generally, the responsibility of the application server implementation will be to append a property

10

mp.metrics.appNameto the org.eclipse.microprofile.config.Config instance of each application
during deployment time, its value being the web context root of the application or the JAR name.
This can be achieved for example by adding a custom ConfigSource with an ordinal less than 100,

because the ConfigSource that reads properties
ordinal of 100, and this needs to have higher priority.

META-INF/microprofile-config.properties has an

11

Chapter 4. REST endpoints

This section describes the REST-api, that monitoring agents would use to retrieve the collected
metrics. (Java-) methods mentioned refer to the respective Objects in the Java API. See also
Application Metrics Programming Model

4.1. JISON format

¥ When using JSON format, the REST API will respond to GET requests with data formatted in a
tree like fashion with sub-trees for the sub-resources. A sub-tree that does not contain data must
be omitted.

¥ A 'shadow tree' that responds to OPTIONS will provide the metadata and tags associated to a
metric name.

4.1.1. Translation rules for metric names and handling of tags
The following rules apply only to GET requests:

¥ Tags are appended to the leaf element of the metricOs JSON tree.

¥ For metrics with tags, the metric name must be appended with a semicolon ; followed by a
semicolon-separated list of tag key/value pairs.

¥ For compound metrics (those with child JSON attributes) with tags, only the "leaf" metric names
are decorated with tags.

¥ Semicolons ; present in tag values must be converted to underscores _in JSON output.

For example:

{

E'carsCounter;colour=red " : 0,

'carsCounter;colour=blue;car=sedan " : 0,

carsMeter": {
"count;colour=red " : 0,
"meanRate;colour=red' : 0,
"oneMinRate;colour=red" : 0,
"fiveMinRate;colour=red " : O,
"fifteenMinRate;colour=red " : 0,
"count;colour=blue " : 0,
"meanRate;colour=blue" : 0,
"oneMinRate;colour=blue" : 0,
"fiveMinRate;colour=blue " : 0,
"fifteenMinRate;colour=blue " : 0O

m M

ey I M M e T T M T e e

The following apply to both GET and OPTION requests:

12

¥ Each tag is a key-value-pair in the format of <key>=<value> The list of tags must be sorted
alphabetically by key name.

¥ If the metric name or tag value contains a special reserved JSON character, these characters
must be escaped in the JSON response.

If the metric has no tags, the semicolon ; must be omitted.
For example,

{

E "metricWithoutTags": 192

}

REST-API Objects

API-objects MAY include one or more metrics as in

{
E "thread.count " : 33,
E "thread.max.count" : 47,
E "memory.maxHeap 3817863211
E "memory.usedHedp: 16859081
E "memory.committedHedp: 64703546
}
or
{A
E "hitCount;type=yes ": 45
}

In case /metrics is requested, then the data for the scopes are wrapped in the scope name:

{

E "application ": {

E "hitCount": 45

},

"base': {
"thread.count " : 33,
"thread.max.count" : 47

},

"vendor': {...}

= [T [T [y mp my mp

If there is a scope that contains no metrics, then it can be either present with an empty object as its
value, or it can be omitted completely.

13

4.1.2. Gauge JSON Format

The value of the gauge must be equivalent to a call to the instance GaugeOs getValue() .

Example Gauge JSON GET Response

{

E "responsePercentage': 48.45632,

E "responsePercentage;servlet=two ": 26.23654,

E "responsePercentage;store=webshop;servlet=three ": 29.24554

}

4.1.3. Counter JSON Format

The value of the counter must be equivalent to a call to the instance CounterOs getCount() .

Example Counter JSON GET Response

{

E "hitCount ": 45,

"hitCount;servlet=two ": 3,
"hitCount;store=webshop;servilet=three ": 4

=~ 1> [Tp

4.1.4. Concurrent Gauge JSON Format

ConcurrentGaugeis a complex metric type comprised of multiple key/values. The format is specified
by the table below.

Table 2. JISON mapping for a ConcurrentGauge metric

JSON Key Value (Equivalent ConcurrentGauge method)
current getValue()

min getMin()

max getMax()

Example ConcurrentGauge JSON GET Response

{

E "callCount ": {

"current " : 48,

"min': 4,

"maX: 50,
"current;component=backend' : 23,
"min;component=backentt 1,
"max;component=backetid 29

= [T> [Tp 1> [T» > M [T

14

4.1.5. Meter JISON Format

Meter is a complex metric type comprised of multiple key/values. The format is specified by the
table below.

Table 3. JSON mapping for a Meter metric

JSON Key Value (Equivalent Meter method)
count getCount()

meanRate getMeanRate()

oneMinRate getOneMinuteRate()
fiveMinRate getFiveMinuteRate()
fifteenMinRate getFifteenMinuteRate()

Example Meter JSON GET Response

"requests”: {
"count": 29382
"meanRate 12.223,
"oneMinRaté: 12.563,
"fiveMinRate ": 12.364,
"fifteenMinRate ": 12.126,
"count;servlet=one ": 29382
"meanRate;servlet=one": 12.223,
"oneMinRate;servlet=one": 12.563,
"fiveMinRate;servlet=one ": 12.364,
"fiteenMinRate;servlet=one ": 12.126,
"count;servlet=two ": 29382
"meanRate;servlet=two": 12.223,
"oneMinRate;servlet=two ": 12.563,
"fiveMinRate;servlet=two ": 12.364,
"fiteenMinRate;servlet=two ": 12.126

ST M M [T [T> T M T M M T T T T T T T

4.1.6. Histogram JSON Format

Histogram is a complex metric type comprised of multiple key/values. The format is specified by the
table below.

Table 4. JISON mapping for a Histogram metric

JSON Key Value (Equivalent Histogram method)
count getCount()

min getSnapshot().getMin()

max getSnapshot().getMax()

mean getSnapshot().getMean()

stddev getSnapshot().getStdDev()

JSON Key Value (Equivalent Histogram method)

p50 getSnapshot().getMedian()

p75 getSnapshot().get75thPercentile()
p95 getSnapshot().get95thPercentile()
p98 getSnapshot().get98thPercentile()
p99 getSnapshot().get99thPercentile()
p999 getSnapshot().get999thPercentile()

Example Histogram JSON GET Response

"daily_value_changes": {
"count": 2,
"min": -1624,
"maxX: 26,
"meah: -799.0,
"stddev": 825.0,
"p50': 26.0,
"p75': 26.0,
"p95': 26.0,
"p98': 26.0,
"p99': 26.0,
"p999': 26.0,
"count;servlet=two ": 2,
"min;servlet=two ":-1624,
"max;servlet=two ": 26,
"mean;servlet=two": -799.0,
"stddev;servlet=two ":825.0,
"p50;serviet=two ": 26.0,
"p75;serviet=two ": 26.0,
"p95;serviet=two ": 26.0,
"p98;serviet=two ": 26.0,
"p99;serviet=two ":26.0,
"p999;serviet=two ": 26.0

S T M M My e M M T T T T T T T T T T T T T T T T m

4.1.7. Timer JSON Format

Timer is a complex metric type comprised of multiple key/values. The format is specified by the
table below.

Table 5. JSON mapping for a Timer metric

JSON Key Value (Equivalent Timer method)
count getCount()

meanRate getMeanRate()

oneMinRate getOneMinuteRate()

16

JSON Key
fiveMinRate
fiteenMinRate
min

max

mean
stddev

p50

p75

p95

p98

p99

p999

Value (Equivalent Timer method)
getFiveMinuteRate()
getFifteenMinuteRate()
getSnapshot().getMin()
getSnapshot().getMax()
getSnapshot().getMean()
getSnapshot().getStdDev()
getSnapshot().getMedian()
getSnapshot().get75thPercentile()
getSnapshot().get95thPercentile()
getSnapshot().get98thPercentile()
getSnapshot().get99thPercentile()
getSnapshot().get999thPercentile()

17

Example Timer JSON GET Response

"responseTimé: {
"count": 29387
"meanRate: 12.185627192860734
"oneMinRaté: 12.563,
"fiveMinRate ": 12.364,
"fifteenMinRate ": 12.126,
"min": 169916
"maxX: 5608694
"meah: 415041.00024926325
"stddev": 652907.9633011606
"p50': 293324.0,
"p75':344914.0
"p95': 543647.0,
"p98': 2706543.Q
"p99': 5608694.Q
"p999': 5608694.Q
"count;servlet=two ": 29382
"meanRate;servlet=two": 12.185627192860734
"oneMinRate;servlet=two ": 12.563,
"fiveMinRate;servlet=two ": 12.364,
"fifteenMinRate;servlet=two ": 12.126,
"min;servilet=two ":169916
"max;servlet=two ": 5608694
"mean;servilet=two": 415041.00024926325
"stddev;servlet=two ":652907.9633011606
"p50;serviet=two ":293324.0,
"p75;serviet=two ":344914.0,
"p95;serviet=two ":543647.0,
"p98;serviet=two ":2706543.Q
"p99;serviet=two ":5608694.Q
"p999;servlet=two ": 5608694.0

S~ TP MMM MMM M M M M M M T T T T T T T T M M M T T T T T T M T M

4.1.8. Simple Timer JSON Format

Simple Timer is a complex metric type comprised of multiple key/values. The format is specified by
the table below.

Table 6. JSON mapping for a Simple Timer metric

JSON Key Value (Equivalent SimpleTimer method)
count getCount()
elapsedTime getElapsedTime()

18

Example Simple Timer JSON GET Response

{

E "simple_responseTimée': {

E "count": 1,

E "elapsedTime': 12300000000
E}

}

4.1.9. Metadata

Metadata is exposed in a tree-like fashion with sub-trees for the sub-resources mentioned
previously. Tags from metrics associated with the metric name are also included. The 'tags' attribute
is an array of nested arrays which hold tags from different metrics that are associated with the

metadata.
Example:

If GET /metrics/base/fooVal exposes:

{
E "fooVal;store=webshop": 12345

}

then OPTIONS /metrics/base/fooVal will expose:

{

E "fooVal": {

E "unit": "milliseconds",

E "type" "gauge",

E "description": "The size of foo after each request",

E “displayName": "Size of foo",
E "tags": [

E [

E "store=webshop"

E]

E]

E}

}

If GET /metrics/base exposes multiple values like this:

19

Example of exposed metrics data

{
E "fooVal;store=webshop": 12345,

E "barVal;store=webshop;component=backend": 42,
E "barVal;store=webshop;component=frontend": 63

}

then OPTIONS /metrics/baseexposes:

Example of JSON output of Metadata

"fooVal": {
"unit": "milliseconds",
"type": "gauge",

"description": "The average duration of foo requests during last 5 minutes",
"displayName": "Duration of foo",
"tags": [
[
"store=webshop"
]
]
b
"barVval": {
"unit": "megabytes”,
"type": "gauge",
"tags™: [
[
"store=webshop",
"component=backend"
Il
[
"store=webshop",
"component=frontend"
]
|
}

S TP MM M M M M M M M T T T T T T [T [T [T [T [T M M My mp

4.2. OpenMetrics format

Data is exposed in the OpenMetrics text format, version 0.0.4 as described in OpenMetrics text
format .

The metadata will be included as part of the normal OpenMetrics text format. Unlike the JSON
format, the text format does not support OPTIONS requests.

20

https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details
https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details

n Users that want to write tools to transform the metadata can still request the
metadata via OPTIONS request and application/json media type.

The above json example would look like this in OpenMetrics format

Example of OpenMetrics output

TYPE base_fooVal_seconds gauge

HELP base_fooVal_seconds The average duration of foo requests during last 5 minutes
|

base_fooVal_seconds{store="webshop"} 12.345

TYPE base_barVal_bytes gauge

base_ barVal bytes{component="backend", store="webshop"} 42000 "
TYPE base_barVal_bytes gauge

base barVal_bytes{component="frontend", store="webshop"} 63000

' The description goes into the HELP line

Metric names gets the base unit of the family appended with __and defined labels. Values are
scaled accordingly. See Handling of units

4.2.1. Translation rules for metric names

OpenMetrics text format does not allow for all characters and adds the base unit of a family to the
name. Characters allowed are [a-zA-Z0-9] (Ascii alphabet, numbers and underscore). Exposed
metric names must follow the pattern [a-zA-Z_][a-zA-Z0-9_]*

¥ Characters that do not fall in above category are translated to underscore ().

¥ Scope is always specified at the start of the metric name.

¥ Scope and name are separated by underscore ().

¥ Double underscore is translated to single underscore

¥ The unit is appended to the name, separated by underscore. See Handling of units

4.2.2. Handling of tags

Metric tags are appended to the metric name in curly braces { and } and are separated by comma.
Each tag is a key-value-pair in the format of <key>="<value>" (the quotes around the value are
required).

MicroProfile Metrics timers and histograms expose an OpenMetrics summaryype which requires an
additional quantile tag for certain metrics. The quantile tag must be included alongside the metrics
tags within the curly braces { and }.

The tag value can be any Unicode character but the following characters must be escaped:

¥ Backslash (\) must be escaped as \\ (as two characters: \ and \)
¥ Double-quotes (") must be escaped as \" (as two characters: \ and ")

¥ Line feed (\n) must be escaped as \n (as two characters: \ and n)

21

4.2.3. Handling of units

The OpenMetrics text format adheres to using "base units" when creating the HTTP response. Due
to the different context of each metric type, certain metrics' values must be converted to the
respective "base unit" when responding to OpenMetrics requests. For example, times in
milliseconds must be divided by 1000 and displayed in the base unit (seconds).

The following sections outline how each metric type is handled:
Gauges and Histograms

The metric name and values for Gaugeand Histogram are converted to the "base unit" in respect to
the unit value in the Metadata.

¥ If the Metadata is empty, NONEor null, the metric name is used as is without appending the unit
name and no scaling is applied.

¥ If the metricOs metadata contains a known unit, as defined in the MetricUnits class, the
OpenMetrics value should be scaled to the base unit of the respective family. The name of the
base unit is appended to the metric name delimited by underscores (.

¥ If the unit is specified and is not defined in the MetricUnits class, the value is not scaled but the
unit is still appended to the metric name delimited by underscores ().

Unit families and their base units are described under OpenMetrics metric names, Base units

Families and OpenMetrics base units are:

Family Base unit

Bits bytes

Bytes bytes

Time seconds

Percent ratio (normally ratio is A_per_B, but there are

exceptions like disk_usage_ratio)
Counters

Counter metrics are considered dimensionless. The implementation must not append the unit name
to the metric name and must not scale the value.

Meters and Timers

Meter and Timer have fixed units as described below regardless of the unit value in the Metadata.

4.2.4. Gauge OpenMetrics Text Format

The value of the gauge must be the value of getValue() with appropriate naming/scaling based on
Handling of units

22

https://prometheus.io/docs/practices/naming/#base-units

Example OpenMetrics text format for a Gauge in dollars.

TYPE application_cost_dollars gauge
HELP application_cost_dollars The running cost of the server in dollars.
application_cost_dollars 80

4.2.5. Counter OpenMetrics Text Format

The value of the counter must be the value of getCount() . The exposed metric name must have a
_total suffix. The suffix is not appended if the (translated) original metric name already ends in
_total . Counters do not have a suffix for the unit.

Example OpenMetrics text format for a Counter.

TYPE application_visitors_total counter
HELP application_visitors_total The number of unique visitors
application_visitors_total 80

4.2.6. Concurrent Gauge OpenMetrics Text Format

ConcurrentGaugeis a complex metric type comprised of multiple key/values. Each key will require a
suffix to be appended to the metric name. The format is specified by the table below.

Table 7. OpenMetrics text mapping for a ConcurrentGauge metric

Suffix{label} TYPE Value (Meter method) Units
current Gauge getCount() N/A
min Gauge getMin() N/A
max Gauge getMax() N/A

Concurrent gauges do not have a suffix for the unit.

Example OpenMetrics text format for a Concurrent Gauge

TYPE application_method_a_invocations _current gauge

HELP application_method_a_invocations_current The number of parallel invocations of
methodA() !

application_method_a_invocations_current 80

TYPE application_method_a_invocations_min gauge
application_method_a_invocations_min 20

TYPE application_method_a invocations_max gauge
application_method_a_invocations_max 100

I Note help is only emitted for the metric related to getCount() , but not for _min and _max.

4.2.7. Meter OpenMetrics Text Format

Meter is a complex metric type comprised of multiple key/values. Each key will require a suffix to be

23

appended to the metric name. The format is specified by the table below.
The # HELPdescription line is only required for the total value as shown below.

Table 8. OpenMetrics text mapping for a Meter metric

Suffix{label} TYPE Value (Meter method)
total Counter getCount()
rate_per_second Gauge getMeanRate()
one_min_rate_per_second Gauge getOneMinuteRate()
five_min_rate_per_second Gauge getFiveMinuteRate()
fifteen_min_rate_per_second Gauge getFifteenMinuteRate()

Example OpenMetrics text format for a Meter

TYPE application_requests_total counter

HELP application_requests_total Tracks the number of requests to the server
application_requests_total 29382

TYPE application_requests_rate_per_second gauge
application_requests_rate_per_second 12.223

TYPE application_requests_one_min_rate_per_second gauge
application_requests_one_min_rate_per_second 12.563

TYPE application_requests_five_min_rate_per_second gauge
application_requests_five_min_rate_per_second 12.364

TYPE application_requests_fifteen_min_rate_per_second gauge
application_requests_fifteen_min_rate per_second 12.126

4.2.8. Histogram OpenMetrics Text Format

Units

N/A
PER_SECOND
PER_SECOND
PER_SECOND
PER_SECOND

Histogram is a complex metric type comprised of multiple key/values. Each key will require a suffix

to be appended to the metric name with appropriate naming/scaling based on
The format is specified by the table below.

The # HELPdescription line is only required for the summaryalue as shown below.

Table 9. OpenMetrics text mapping for a Histogram metric

Suffix{label} TYPE Value (Histogram method)
min_<units> Gauge getSnapshot().getMin()
max_<units> Gauge getSnapshot().getMax()
mean_<units> Gauge getSnapshot().getMean()
stddev_<units> Gauge getSnapshot().getStdDev()
<units>_count > Summary getCount()
<units>{quantile="0.5"} ? Summary getSnapshot().getMedian()
<units>{quantile="0.75"} 2 Summary getSnapshot().get75thPercentil
e

24

Handling of units

Units

. 1
<units>

. 1
<units>

. 1
<units>

. 1
<units>
N/A

- 1
<units>

<units> "

Suffix{label} TYPE Value (Histogram method) Units
<units>{quantile="0.95"} ? Summary g((a)tSnapshot().get95thPercentiI <units>*
e
<units>{quantile="0.98"} 2 Summary ggtSnapshot().get98thPercentiI <units>*
e
<units>{quantile="0.99"} 2 Summary g((a)tSnapshot().get99thPercentiI <units>*
e
<units>{quantile="0.999"} ? Summary %e(;Snapshot().getQQchPercenti <units>*
' The implementation is expected to convert the result returned by the Histogram into the base unit

(if known). The <unit> represents the base metric unit and is named according to

Handling of units

> The summarytype is a complex metric type for OpenMetrics which consists of the count and

multiple quantile values.

Example OpenMetrics text format for a Histogram with unit bytes.

TYPE application_file_sizes mean_hbytes gauge
application_file_sizes_mean_bytes 4738.231

TYPE application_file_sizes _max_bytes gauge
application_file_sizes_max_bytes 31716

TYPE application_file_sizes _min_bytes gauge
application_file_sizes_min_bytes 180

TYPE application_file_sizes stddev_bytes gauge
application_file_sizes_stddev_bytes 1054.7343037063602
TYPE application_file_sizes bytes summary

HELP application_file_sizes bytes Users file size
application_file_sizes bytes_count 2037
application_file_sizes bytes {quantile ='0.5"} 4201
application_file_sizes_bytes {quantile ="0.75"} 6175
application_file_sizes bytes {quantile ='0.95"} 13560
application_file_sizes_bytes {quantile ="0.98"} 29643
application_file_sizes _bytes {quantile ='0.99"} 31716
application_file_sizes bytes {quantile ='0.999"} 31716

4.2.9. Timer OpenMetrics Text Format

Timer is a complex metric type comprised of multiple key/values. Each key will require a suffix to be

appended to the metric name. The format is specified by the table below.
The # HELPdescription line is only required for the summaryalue as shown below.

Table 10. OpenMetrics text mapping for a Timer metric

Suffix{label} TYPE Value (Timer method)
rate_per_second Gauge getMeanRate()
one_min_rate_per_second Gauge getOneMinuteRate()
five_min_rate_per_second Gauge getFiveMinuteRate()

Units

PER_SECOND
PER_SECOND
PER_SECOND

25

Suffix{label}
fifteen_min_rate_per_second
min_seconds

max_seconds
mean_seconds
stddev_seconds
seconds_counf

2

seconds{quantile="0.5"}

seconds{quantile="0.75"} ?
seconds{quantile="0.95"} ?
seconds{quantile="0.98"}
seconds{quantile="0.99"} ?

seconds{quantile="0.999"} *

' The implementation is expected to convert the result returned by the

TYPE
Gauge
Gauge
Gauge
Gauge
Gauge
Summary
Summary

Summary
Summary
Summary
Summary

Summary

Value (Timer method)

getFifteenMinuteRate()
getSnapshot().getMin()
getSnapshot().getMax()
getSnapshot().getMean()
getSnapshot().getStdDev()
getCount()
getSnapshot().getMedian()

getSnapshot().get75thPercentil
e()

getSnapshot().get95thPercentil
e()

getSnapshot().get98thPercentil
e()
getSnapshot().get99thPercentil
e()

getSnapshot().get999thPercenti
le()

Units

PER_SECOND

SECONDS
SECONDS
SECONDS
SECONDS
N/A

SECONDS
SECONDS

SECONDS
SECONDS
SECONDS

SECONDS

Timer into seconds

> The summarytype is a complex metric type for OpenMetrics which consists of the count and

multiple quantile values.

26

Example OpenMetrics text format for a Timer

TYPE application_response_time_rate_per_second gauge
application_response_time_rate_per_second 0.004292520715985437

TYPE application_response_time_one_min_rate_per_second gauge
application_response_time_one_min_rate_per_second 2.794076465421066E-14
TYPE application_response_time_five_min_rate_per_second gauge
application_response_time_five_min_rate_per_second 4.800392614619373E-4
TYPE application_response_time_fifteen_min_rate_per_second gauge
application_response_time_fifteen_min_rate_per_second 0.01063191047532505
TYPE application_response_time_mean_seconds gauge
application_response_time_mean_seconds 0.000415041

TYPE application_response_time_max_seconds gauge
application_response_time_max_seconds 0.0005608694

TYPE application_response_time_min_seconds gauge
application_response_time_min_seconds 0.000169916

TYPE application_response_time_stddev_seconds gauge
application_response_time_stddev_seconds 0.000652907

TYPE application_response_time_seconds summary

HELP application_response_time_seconds Server response time for /index.html
application_response_time_seconds_count 80
application_response_time_seconds {quantile ='0.5"} 0.0002933240
application_response_time_seconds {quantile ="0.75"} 0.000344914
application_response_time_seconds {quantile ='0.95"} 0.000543647
application_response_time_seconds {quantile ='0.98"} 0.002706543
application_response_time_seconds {quantile ='0.99"} 0.005608694
application_response_time_seconds {quantile ="0.999"} 0.005608694

4.2.10. Simple Timer OpenMetrics Text Format

Simple Timer is a complex metric type comprised of multiple key/values. Each key will require a
suffix to be appended to the metric name. The format is specified by the table below.

Table 11. OpenMetrics text mapping for a SimpleTimer metric

Suffix{label} TYPE Value (SimpleTimer method) Units

total Counter getCount() N/A
elapsedTime_seconds Gauge getElapsedTime() SECONDS
' The implementation is expected to convert the result returned by the SimpleTimer into seconds

Example OpenMetrics text format for a SimpleTimer

TYPE application_response_time_total counter

HELP application_response_time_total The number of calls to this REST endpoint #(1)
application_response_time_total 12

TYPE application_response_time_elapsedTime_seconds gauge
application_response_time_elapsedTime_seconds 12.3

Note help is only emitted for the metric related to getCount() , but not for elapsedTime.

27

4.3. Security

It must be possible to secure the endpoints via the usual means. The definition of 'usual means' is in
this version of the specification implementation specific.

In case of a secured endpoint, accessing /metrics without valid credentials must return a 401
Unauthorized header.

A server SHOULD implement TLS encryption by default.

It is allowed to ignore security for trusted origins (e.g. localhost)

28

Chapter 5. Required Metrics

Base metrics is a list of metrics that all vendors need to implement. Optional base metrics are
recommended to be implemented but are not required. These metrics are exposed under
/metrics/base .

The following is a list of required and optional base metrics. All metrics are singletons and have
Multi: set to false unless otherwise stated. Visit Metadata for the meaning of each key

Although vendors are required to implement these base metrics, some virtual
machines can not provide them. Vendors should either use other metrics that are
close enough as substitute or not fill these base metrics at all.

5.1. General JVM Stats

UsedHeapMemory

Name memory.usedHeap

DisplayName Used Heap Memory

Type Gauge

Unit Bytes

Description Displays the amount of used heap memory in bytes.
MBean java.lang:type=Memory/HeapMemoryUsage#used

CommittedHeapMemory

Name memory.committedHeap

DisplayName Committed Heap Memory

Type Gauge

Unit Bytes

Description Displays the amount of memory in bytes that is committed for the Java virtual
machine to use. This amount of memory is guaranteed for the Java virtual
machine to use.

MBean java.lang:type=Memory/HeapMemoryUsage#committed

Notes Also from JSR 77

MaxHeapMemory

Name memory.maxHeap

DisplayName Max Heap Memory

Type Gauge

Unit Bytes

29

Description

MBean

GCCount

Name
DisplayName
Type

Unit

Multi

Tags

Description

MBean

Notes

Displays the maximum amount of heap memory in bytes that can be used for
memory management. This attribute displays -1 if the maximum heap
memory size is undefined. This amount of memory is not guaranteed to be
available for memory management if it is greater than the amount of
committed memory. The Java virtual machine may fail to allocate memory
even if the amount of used memory does not exceed this maximum size.

java.lang:type=Memory/HeapMemoryUsage#max

gc.total

Garbage Collection Count
Counter

None

true

{name=9%s}

Displays the total number of collections that have occurred. This attribute lists
-1 if the collection count is undefined for this collector.

java.lang:type=GarbageCollector,name=%s/CollectionCount

There can be multiple garbage collectors active that are assigned to different
memory pools. The %s should be substituted with the name of the garbage
collector.

GCTime - Approximate accumulated collection elapsed time in ms

Name
DisplayName
Type

Unit

Multi

Tags

Description

MBean

Notes

gc.time

Garbage Collection Time
Gauge

Milliseconds

true

{name=%s}

Displays the approximate accumulated collection elapsed time in milliseconds.
This attribute displays -1 if the collection elapsed time is undefined for this
collector. The Java virtual machine implementation may use a high resolution
timer to measure the elapsed time. This attribute may display the same value
even if the collection count has been incremented if the collection elapsed
time is very short.

java.lang:type=GarbageCollector,name=%s/CollectionTime

There can be multiple garbage collectors active that are assigned to different
memory pools. The %s should be substituted with the name of the garbage
collector.

JVM Uptime - Up time of the Java Virtual machine

30

Name
DisplayName
Type

Unit

Description

MBean

Notes

jvm.uptime
JVM Uptime
Gauge
Milliseconds

Displays the time elapsed since the start of the Java virtual machine in
milliseconds.

java.lang:type=Runtime/Uptime

Also from JSR 77

5.2. Thread JVM Stats

ThreadCount

Name thread.count

DisplayName Thread Count

Type Gauge

Unit None

Description Displays the current number of live threads including both daemon and non-

daemon threads

MBean java.lang:type=Threading/ThreadCount

DaemonThreadCount

Name thread.daemon.count

DisplayName Daemon Thread Count

Type Gauge

Unit None

Description Displays the current number of live daemon threads.

MBean java.lang:type=Threading/DaemonThreadCount
PeakThreadCount

Name thread.max.count

DisplayName Peak Thread Count

Type Gauge

Unit None

Description Displays the peak live thread count since the Java virtual machine started or

peak was reset. This includes daemon and non-daemon threads.

MBean java.lang:type=Threading/PeakThreadCount

31

5.3. Thread Pool Stats

(Optional) ActiveThreads

Name
DisplayName
Type

Unit

Multi

Tags
Description

Notes

(Optional) PoolSize

Name
DisplayName
Type

Unit

Multi

Tags
Description

Notes

threadpool.activeThreads

Active Threads

Gauge

None

true

{pool=%s}

Number of active threads that belong to a specific thread pool.

The %s should be substituted with the name of the thread pool. This is a
vendor specific attribute/operation that is not defined in java.lang.

threadpool.size

Thread Pool Size

Gauge

None

true

{pool=%s}

The size of a specific thread pool.

The %s should be substituted with the name of the thread pool. This is a
vendor specific attribute/operation that is not defined in java.lang.

5.4. ClassLoading JVM Stats

LoadedClassCount

Name
DisplayName
Type

Unit

Description

MBean

classloader.loadedClasses.count
Current Loaded Class Count
Gauge

None

Displays the number of classes that are currently loaded in the Java virtual
machine.

java.lang:type=ClassLoading/LoadedClassCount

TotalLoadedClassCount

Name

DisplayName

32

classloader.loadedClasses.total

Total Loaded Class Count

Type
Unit

Description

MBean

UnloadedClassCount

Name
DisplayName
Type

Unit

Description

MBean

Counter
None

Displays the total number of classes that have been loaded since the Java
virtual machine has started execution.

java.lang:type=ClassLoading/TotalLoadedClassCount

classloader.unloadedClasses.total
Total Unloaded Class Count
Counter

None

Displays the total number of classes unloaded since the Java virtual machine
has started execution.

java.lang:type=ClassLoading/UnloadedClassCount

5.5. Operating System

AvailableProcessors

Name
DisplayName
Type

Unit

Description

MBean

cpu.availableProcessors
Available Processors
Gauge

None

Displays the number of processors available to the Java virtual machine. This
value may change during a particular invocation of the virtual machine.

java.lang:type=OperatingSystem/AvailableProcessors

(Optional) SystemLoadAverage

Name
DisplayName
Type

Unit

Description

cpu.systemLoadAverage
System Load Average
Gauge

None

Displays the system load average for the last minute. The system load average
is the sum of the number of runnable entities queued to the available
processors and the number of runnable entities running on the available
processors averaged over a period of time. The way in which the load average
is calculated is operating system specific but is typically a damped time-
dependent average. If the load average is not available, a negative value is
displayed. This attribute is designed to provide a hint about the system load
and may be queried frequently. The load average may be unavailable on some
platforms where it is expensive to implement this method.

33

MBean java.lang:type=OperatingSystem/SystemLoadAverage

(Optional) ProcessCpulLoad

Name cpu.processCpulLoad

DisplayName Process CPU Load

Type Gauge

Unit Percent

Description Displays the "recent cpu usage" for the Java Virtual Machine process
MBean java.lang:type=OperatingSystem

(com.sun.management.UnixOperatingSystemMXBean for Oracle Java, similar
one exists for IBM Java:
com.ibm.lang.management.ExtendedOperatingSystem) Note: This is a vendor
specific attribute/operation that is not defined in java.lang

(Optional) ProcessCpuTime

Name cpu.processCpuTime

DisplayName Process CPU Time

Type Gauge

Unit Nanoseconds

Description Displays the CPU time used by the process on which the Java virtual machine

is running in nanoseconds.

MBean java.lang:type=OperatingSystem
(com.sun.management.UnixOperatingSystemMXBean for Oracle Java, similar
one exists for IBM Java:
com.ibm.lang.management.ExtendedOperatingSystem) Note: This is a vendor
specific attribute/operation that is not defined in java.lang

5.6. (Optional) REST

MetricsEgatheredEfromERESTEstatsEareEoptionalEandEthereforeEmayEnotEbeEavailableEinEeveryEimpleme
ntation.

The MicroProfile Metrics runtime will track metrics from RESTful resource method calls during
runtime (i.e GET, POST, PUT, DELETE, OPTIONS, PATCH, HEAD).
ItEisEupEtoEtheEimplementationEtoEdecideEhowEtoEenableEtheERESTEmetrics.

(Optional) RESTRequests

Name REST.request

DisplayName Total Requests and Response Time
Type SimpleTimer

Unit None

Multi true

34

Tags

Description

Notes

{class=%s1,method=%s2}

The number of invocations and total response time of this RESTful resource
method since the start of the server.

With an asynchronous request the timing that is tracked by the REST metric
must incorporate the time spent by the asynchronous call.

The %slshould be substituted with the fully qualified name of the RESTful
resource class.

The %sZshould be substituted with the name of the RESTful resource method
and appended with its parameter types using an underscore _. Multiple
parameter types are appended one after another (e.g.
<methodName>_<paramTypel> <paramType2>

Parameter type formatting rules:

- The paramter types are fully qualified (e.g. java.lang.Object).

- Array paramter types will be formatted as paramType[] (e.g
java.lang.Object[]).

- A Vararg parameter will be treated as an array.

- Generics will be ignored. For example List<String> will be formatted as
java.util.List

For example given the following RESTful resource:

package org.eclipse.microprofile.metrics.demo

public class RestDemd

> T [T [[mp

public void postMethod String ... s, Object 0){

The OpenMetrics formatted rest metrics would be:

TYPE base_REST_request_total counter

base REST request_total{class="org.eclipse.microprofile.metrics.demo.RestDemo",method=
"postMethod_java.lang.String[]_java.lang.Object"} 1

TYPE base_REST_request_elapsedTime_seconds gauge

base REST request_elapsedTime_seconds{class="org.eclipse.microprofile.metrics.demo.Res
tDemo",method="postMethod_java.lang.String[]_java.lang.Object"} 1.000

35

Chapter 6. Application Metrics Programming
Model

MicroProfile Metrics provides a way to register Application-specific metrics to allow applications to
expose metrics in the application scope (see Scopes for the description of scopes).

Metrics and their metadata are added to a Metric Registry upon definition and can afterwards have
their values set and retrieved via the Java-API and also be exposed via the REST-API (see Exposing
metrics via REST API).

n Implementors of this specification can use the Java API to also expose metrics for
base and vendor scope by using the respective Metric Registry.

There are two options for registering metrics. The easier one is using annotations - the metrics
declared by annotations will be automatically added to the registry when the application starts. In
some cases, however, for example when the full list of required metrics is not known in advance, or
when it is too large, it might be necessary to interact with the registry programmatically and create
new metrics dynamically at runtime. Both approaches can also be combined.

Example set-up of a Gauge metric by an annotation. No unit is given, so MetricUnits.NONE s used, an
explicit name is provided

(enit = MetricUnits . NONEname= "queueSize")
public int getQueueSizé) {
E return queue size;

}

¥ NOTE: The programming API was inspired by Dropwizard Metrics 3.2.3 API, with some changes.
It is expected that many existing DropWizard Metrics based applications can easily be ported
over by switching the package names.

¥ NOTE: There are no hard limits on the number of metrics, but it is often not a good practice to
create a huge number of metrics, because the downstream time series databases that need to
store the metrics may not deal well with this amount of data.

6.1. Responsibility of the MicroProfile Metrics
implementation

¥ The implementation must scan the application at deploy time for Annotations and register the
Metrics along with their metadata in the application MetricsRegistry.

¥ The implementation must watch the annotated objects and update internal data structures
when the values of the annotated objects change. The value of a Gaugds recomputed each time
a client requests the value.

¥ The implementation must expose the values of the objects registered in the MetricsRegistry via
REST-API as described in Exposing metrics via REST API .

36

¥ Metrics registered via non-annotations APl need their values be set via updates from the
application code.

¥ The implementation must flag duplicate metrics upon registration and reject the duplicate
unless the metric is explicitly marked as reusable upon first registration and in all subsequent
registrations.

! A duplicate metric is a metric that has the same scope and MetricID (hame and tags) as an
existing one.

I The implementation must throw an lllegalArgumentException when the metric is rejected.

I Itis not allowed to reuse a metric (hame) for metrics of different types. The implementation
must throw an lllegalArgumentException if such a mismatch is detected.

I Seereusing of metrics for more detalils.

¥ The implementation must flag and reject metrics upon registration if the metadata information
being registered is not equivalent to the metadata information that has already been registered
under the given metric name (if it already exists).

I All metrics of a given metric name must be associated with the same metadata information
I The implementation must throw an lllegalArgumentException when the metric is rejected.

¥ The implementation must throw an lllegalStateException if an annotated metric is invoked,
but the metric no longer exists in the MetricRegistry. This applies to the following annotations :
@Timed, @SimplyTimed, @Counted, @ConcurrentGauge, @Metered

¥ The implementation must make sure that metric registries are thread-safe, in other words,
concurrent calls to methods of MetricRegistry must not leave the registry in an inconsistent
state.

6.2. Base Package

All Java-Classes are in the top-level package org.eclipse.microprofile.metrics or one of its sub-
packages.

The org.eclipse.microprofile.metrics package was influenced by the Drop Wizard

Metrics project release 3.2.3.
11

Implementors can consult this project for implementation ideas.

SeeReferences for more information.

6.3. Annotations

All Annotations are in the org.eclipse.microprofile.metrics.annotation package

37

These annotations include interceptor bindings as defined by the Java Interceptors
specification.

CDI leverages on the Java Interceptors specification to provide the ability to
associate interceptors to beans via typesafe interceptor bindings, as a mean to
separate cross-cutting concerns, like Metrics annotations instrumentation, from
the application business logic.

Both the Java Interceptors and CDI specifications set restrictions about the type of
bean to which an interceptor can be bound.

That implies only managed beans whose bean types are proxyable can be
instrumented using the Metrics annotations.

The org.eclipse.microprofile.metrics.annotation package was influenced by the
CDI extension for Dropwizard Metric project release 1.4.0.

Implementors can consult this project for implementation ideas.

SeeReferences for more information.

The following Annotations exist, see below for common fields:

Annotation

@Counted

@Concurren
tGauge

@Gauge

@Metered

@Metric

@Timed

@SimplyTim
ed

Applies to Description Default Unit
M, C, T Denotes a counter, which counts the MetricUnits.NONE
invocations of the annotated object.
M,C, T Denotes a gauge which counts the MetricUnits.NONE
parallel invocations of the annotated
object.
M Denotes a gauge, which samples the no default , must be
value of the annotated object. supplied by the user
M, C, T Denotes a meter, which tracks the MetricUnits.PER_SECOND

frequency of invocations of the
annotated object.

M, F, P An annotation that contains the metadata MetricUnits.NONE
information when requesting a metric to
be injected or produced. This annotation
can be used on fields of type Meter, Timer,
Counter, and Histogram. For Gaugethe
@Metricannotation can only be used on
producer methods/fields.

M,C, T Denotes a timer, which tracks duration of MetricUnits.NANOSECOND
the annotated object. S

M,C T Denotes a simple timer, which tracks MetricUnits. NANOSECOND
duration and invocations of the S

annotated object.

(C=Constructor, F=Field, M=Method, P=Parameter, T=Type)

38

Annotation Description Default

@RegistryType Qualifies the scope of Metric Registry to inject application (scope)
when injecting a MetricRegistry.

6.3.1. Fields

All annotations (Except RegistryType) have the following fields that correspond to the metadata
fields described in Metadata .

String name
Optional. Sets the name of the metric. If not explicitly given the name of the annotated object is
used.

boolean absolute
If true , uses the given name as the absolute name of the metric. If false , prepends the package
name and class name before the given name. Default value is false .

String displayName
Optional. A human readable display name for metadata.

String description
Optional. A description of the metric.

String unit
Unit of the metric. For @Gaugao default is provided. Check the MetricUnits class for a set of pre-
defined units.

boolean reusable
Denotes if a metric with a certain MetriclD can be registered in more than one place. Does not
apply to gauges.

Implementors are encouraged to issue warnings in the server log if metadata is
missing. Implementors MAY stop the deployment of an application if Metadata is
missing.

6.3.2. Annotated Naming Convention

Annotated metrics are registered into the application MetricRegistry with the name based on the
annotationOs nameand absolute fields.

39

Example of annotated metric names
package com.example
import javax.inject.Inject ;
import org.eclipse.microprofile.metrics.Counter ;

import org.eclipse.microprofile.metrics.annotation.Metric ;

public class Colours {

[T [T T

Counter redCount

(name"blue")
Counter blueCount;

T > m»

(absolute =true)
Counter greenCount

™ > [mp

(name'purple ", absolute =true)
Counter purpleCount;

=~ [T M [m

The above bean would produce the following entries in the MetricRegistry

com.example.Colours.redCount
com.example.Colours.blue
greenCount

purple

6.3.3. @Counted
An annotation for marking a method, constructor, or type as a counter.

The implementation must support the following annotation targets:

¥ CONSTRUCTOR
¥ METHOD
v TYPE

This annotation has changed in MicroProfile Metrics 2.0: Counters now always
increase monotonically upon invocation. The old behaviour pre 2.0 can now be
achieved with @ConcurrentGauge

40

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register a counter for the constructor
using the Annotated Naming Convention . The counter is increased by one when the constructor is
invoked.

Example of an annotated constructor

public CounterBearf) {
}

METHOD

When a non-private method is annotated, the implementation must register a counter for the
method using the Annotated Naming Convention . The counter is increased by one when the
method is invoked.

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register a counter for each of the
constructors and non-private methods using the Annotated Naming Convention . The counters are
increased by one when the corresponding constructor/method is invoked.

Example of an annotated type/class

public class CounterBean{

E public void countMethod®) {}
E public void countMethodZ) {}

6.3.4. @ConcurrentGauge

An annotation for marking a method, constructor, or type as a parallel invocation counted. The
semantics is such that upon entering a marked item, the parallel count is increased by one and

41

upon exit again decreased by one. The purpose of this annotation is to gauge the number of parallel
invocations of the marked methods or constructors.

The implementation must support the following annotation targets:

¥ CONSTRUCTOR
¥ METHOD
v TYPE

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register gauges, representing the
current, previous minute maximum, and previous minute minimum values for the constructor
using the Annotated Naming Convention

Example of an annotated constructor

public CounterBearf) {
}

METHOD

When a non-private method is annotated, the implementation must register gauges, representing
the current, previous minute maximum, and previous minute minimum values for the method
using the Annotated Naming Convention

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register gauges, representing the current,
previous minute maximum, and previous minute minimum values for each of the constructors and
non-private methods using the Annotated Naming Convention

42

Example of an annotated type/class

public class CounterBean{

E public void countMethodX) {}
E public void countMethodZ) {}

6.3.5. @Gauge

An annotation for marking a method as a gauge. No default MetricUnit is supplied, so the unit must

always be specified explicitly.
The implementation must support the following annotation target:
¥y METHOD

The following lists the behavior for each annotation target.

METHOD

When a non-private method is annotated, the implementation must register a gauge for the method
using the Annotated Naming Convention . The gauge value and type is equal to the annotated
method return value and type.

Example of an annotated method

(enit = MetricUnits . NONE
public long getValue() {
E return value;

}

6.3.6. @Metered

An annotation for marking a constructor or method as metered. The meter counts the invocations
of the constructor or method and tracks how frequently they are called.

The implementation must support the following annotation targets:

y CONSTRUCTOR
¥ METHOD
v TYPE

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

43

CONSTRUCTOR

When a constructor is annotated, the implementation must register a meter for the constructor
using the Annotated Naming Convention . The meter is marked each time the constructor is
invoked.

Example of an annotated constructor

public MeteredBeag) {
}

METHOD

When a non-private method is annotated, the implementation must register a meter for the method
using the Annotated Naming Convention . The meter is marked each time the method is invoked.

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register a meter for each of the
constructors and non-private methods using the Annotated Naming Convention . The meters are
marked each time the corresponding constructor/method is invoked.

Example of an annotated type/class

public class MeteredBean{

E public void meteredMethod() {}
E public void meteredMethodp) {}

6.3.7. @SimplyTimed

An annotation for marking a constructor or method of an annotated object as simply timed. The
metric of type SimpleTimer tracks the count of invocations of the annotated object and tracks how
long it took the invocations to complete.

The implementation must support the following annotation targets:

¥ CONSTRUCTOR
¥ METHOD

44

¥ TYPE

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register a simple timer for the
constructor using the Annotated Naming Convention . Each time the constructor is invoked, the
execution will be timed.

Example of an annotated constructor

public SimplyTimedBea) {
}

METHOD

When a non-private method is annotated, the implementation must register a simple timer for the
method using the Annotated Naming Convention . Each time the method is invoked, the execution
will be timed.

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register a simple timer for each of the
constructors and non-private methods using the Annotated Naming Convention . Each time a
constructor/method is invoked, the execution will be timed with the corresponding simple timer.

Example of an annotated type/class

public class SimplyTimedBean{

E public void simplyTimedMethodl) {}
E public void simplyTimedMethod?) {}

45

6.3.8. @Timed

An annotation for marking a constructor or method of an annotated object as timed. The metric of
type Timer tracks how frequently the annotated object is invoked, and tracks how long it took the
invocations to complete. The data is aggregated to calculate duration statistics and throughput
statistics.

The implementation must support the following annotation targets:

y CONSTRUCTOR
¥ METHOD
v TYPE

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register a timer for the constructor
using the Annotated Naming Convention . Each time the constructor is invoked, the execution will
be timed.

Example of an annotated constructor

public TimedBeaf) {
}

METHOD

When a non-private method is annotated, the implementation must register a timer for the method
using the Annotated Naming Convention . Each time the method is invoked, the execution will be
timed.

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register a timer for each of the
constructors and non-private methods using the Annotated Naming Convention . Each time a
constructor/method is invoked, the execution will be timed with the corresponding timer.

46

Example of an annotated type/class

public class TimedBeary

E public void timedMethodX) {}
E public void timedMethodZ) {}

6.3.9. @Metric
An annotation requesting that a metric should be injected or registered.

The implementation must support the following annotation targets:

¥ FIELD
¥ METHOD
y PARAMETER

The following lists the behavior for each annotation target.

FIELD

When a metric producer field is annotated, the implementation must register the metric to the
application MetricRegistry (using the Annotated Naming Convention). If a metric with the given

name already exist (created by another @Produces for example), an
java.lang.lllegalArgumentException ~ must be thrown.

Example of a producer field

(name" hitPercentage ")
GaugeDouble> hitPercentage = new GaugeDouble>() {

public Double getValue() {
return hits / total ;

~ [Th [Th [T TP
—

—

When a metric injected field is annotated, the implementation must provide the registered metric
with the given name (using the Annotated Naming Convention) if the metric already exist. If no
metric exists with the given name then the implementation must produce and register the

requested metric. @Metric can only be used on injected fields of type Meter, Timer, Counter, and
Histogram.

a7

Example of an injected field

(name= "applicationCount ")
Counter count;

METHOD

When a metric producer method is annotated, the implementation must register the metric
produced by the method using the Annotated Naming Convention

Example of a producer method

(name= "hitPercentage ")

protected GaugeDouble> createHitPercentage () {
E return new GaugeDoublex() {

E
E public Double getvalue() {
E return hits / total ;
E
E kL
}

PARAMETER

When a metric parameter is annotated, the implementation must provide the registered metric

with the given name (using the Annotated Naming Convention) if the metric already exist. If no
metric exists with the given name then the implementation must produce and register the
requested metric.

Example of an annotated parameter

public void init ((name'instances ") Counter instances) {
E instances .inc();
}

6.4. Registering metrics dynamically

In addition to declaring metrics via annotations, it is possible to dynamically (un)register metrics by

calling methods of a MetricRegistry object. While using annotations is generally the preferred
approach, registering metrics dynamically can be useful in some cases, for example, when the final

list of metrics is not known in advance (when the application is being coded), or when there are too

many similar metrics and it would be more practical to register them in a for loop than to
introduce lots of annotations in the code. The two approaches can also be combined if necessary.

48

6.4.1. List of methods of the MetricRegistry related to registering new

metrics

Method

counter(String name)
counter(String name, Tag E tags)
counter(Metadata metadata)

counter(Metadata metadata, Tag E tags)

concurrentGauge(String name)
concurrentGauge(String name, Tag E tags)
concurrentGauge(Metadata metadata)

concurrentGauge(Metadata metadata, TagE tags)

histogram(String name)
histogram(String name, Tag E tags)
histogram(Metadata metadata)

histogram(Metadata metadata, Tag E tags)

meter(String name)

meter(String name, Tag E tags)
meter(Metadata metadata)
meter(Metadata metadata, Tag E tags)
timer(String name)

timer(String name, Tag E tags)
timer(Metadata metadata)
timer(Metadata metadata, Tag E tags)
simpleTimer(String name)
simpleTimer(String name, Tag E tags)
simpleTimer(Metadata metadata)

simpleTimer(Metadata metadata, Tag E tags)
register(String name, T metric)
register(Metadata metadata, T metric)

register(Metadata metadata, T metric, Tag E
tags)

All metrics in the table above, except the variants of
MetriclD already exists, the existing one is returned.

if a compatible metric with the same

Description

Counter with given name and no tags
Counter with given name and tags
Counter from given Metadataobject

Counter from given Metadataobject with given
tags

Concurrent gauge with given name and no tags
Concurrent gauge with given name and tags
Concurrent gauge from given Metadataobject

Concurrent gauge from given
with given tags

Metadata object

Histogram with given name and no tags
Histogram with given name and tags
Histogram from given Metadataobject

Histogram from given
tags

Metadata object with given

Meter with given name and no tags
Meter with given name and tags
Meter from given Metadataobject
Meter from given Metadataobject with given tags
Timer with given name and no tags

Timer with given name and tags

Timer from given Metadataobject
Timer from given Metadataobject with given tags
SimpleTimer with given name and no tags
SimpleTimer with given name and tags
SimpleTimer from given Metadataobject

SimpleTimer from given
given tags

Metadata object with

Registers the given metric instance under the
given name

Registers the given metric instance using the
given metadata object

Registers the given metric instance using the
given metadata object and given tags

register , exhibit the get-or-create semantics, so

49

