snssde1d()
Assume that we want to describe the following SDE:
Ito form3:
\[\begin{equation}\label{eq:05} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt + \theta X_{t} dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\]
Stratonovich form: \[\begin{equation}\label{eq:06} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt +\theta X_{t} \circ dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\]
In the above \(f(t,x)=\frac{1}{2}\theta^{2}
x\) and \(g(t,x)= \theta x\)
(\(\theta > 0\)), \(W_{t}\) is a standard Wiener process. To
simulate this models using snssde1d()
function we need to
specify:
drift
and diffusion
coefficients as R
expressions that depend on the state variable x
and time
variable t
.N=1000
(by default:
N=1000
).M=1000
(by default: M=1
).t0=0
, x0=10
and end
time T=1
(by default: t0=0
, x0=0
and T=1
).Dt=0.001
(by default:
Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (by default
type="ito"
).method
(by default
method="euler"
).R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> theta = 0.5
R> f <- expression( (0.5*theta^2*x) )
R> g <- expression( theta*x )
R> mod1 <- snssde1d(drift=f,diffusion=g,x0=10,M=1000,type="ito") # Using Ito
R> mod2 <- snssde1d(drift=f,diffusion=g,x0=10,M=1000,type="str") # Using Stratonovich
R> mod1
Itô Sde 1D:
| dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) * dW(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial value | x0 = 10.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Stratonovich Sde 1D:
| dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) o dW(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial value | x0 = 10.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Using Monte-Carlo simulations, the following statistical measures
(S3 method
) for class snssde1d()
can be
approximated for the \(X_{t}\) process
at any time \(t\):
mean
.moment
with order=2
and
center=TRUE
.Median
.Mode
.quantile
.min
and
max
.skewness
and kurtosis
.cv
.moment
.bconfint
.summary
.The summary of the results of mod1
and mod2
at time \(t=1\) of class
snssde1d()
is given by:
Monte-Carlo Statistics for X(t) at time t = 1
Mean 11.21041
Variance 37.34360
Median 9.95235
Mode 8.03077
First quartile 7.00050
Third quartile 13.84224
Minimum 2.24849
Maximum 47.23754
Skewness 1.78370
Kurtosis 8.23099
Coef-variation 0.54511
3th-order moment 407.04925
4th-order moment 11478.47403
5th-order moment 299393.26186
6th-order moment 9011343.65855
Monte-Carlo Statistics for X(t) at time t = 1
Mean 12.8797
Variance 54.2186
Median 11.3893
Mode 9.8106
First quartile 8.0782
Third quartile 15.3722
Minimum 2.0887
Maximum 72.4702
Skewness 2.2451
Kurtosis 11.6921
Coef-variation 0.5717
3th-order moment 896.3033
4th-order moment 34370.6613
5th-order moment 1387912.1394
6th-order moment 65677123.6792
Hence we can just make use of the rsde1d()
function to
build our random number generator for the conditional density of the
\(X_{t}|X_{0}\) (\(X_{t}^{\text{mod1}}| X_{0}\) and \(X_{t}^{\text{mod2}}|X_{0}\)) at time \(t = 1\).
R> x1 <- rsde1d(object = mod1, at = 1) # X(t=1) | X(0)=x0 (Ito SDE)
R> x2 <- rsde1d(object = mod2, at = 1) # X(t=1) | X(0)=x0 (Stratonovich SDE)
R> head(data.frame(x1,x2),n=5)
x1 x2
1 8.7078 9.3026
2 7.8980 7.9105
3 10.7227 15.5981
4 10.4143 12.2105
5 4.5190 4.7178
The function dsde1d()
can be used to show the
Approximate transitional density for \(X_{t}|X_{0}\) at time \(t-s=1\) with log-normal curves:
R> mu1 = log(10); sigma1= sqrt(theta^2) # log mean and log variance for mod1
R> mu2 = log(10)-0.5*theta^2 ; sigma2 = sqrt(theta^2) # log mean and log variance for mod2
R> AppdensI <- dsde1d(mod1, at = 1)
R> AppdensS <- dsde1d(mod2, at = 1)
R> plot(AppdensI , dens = function(x) dlnorm(x,meanlog=mu1,sdlog = sigma1))
R> plot(AppdensS , dens = function(x) dlnorm(x,meanlog=mu2,sdlog = sigma2))
In Figure 2, we present the flow of trajectories, the mean path (red lines) of solution of \(\eqref{eq:05}\) and \(\eqref{eq:06}\), with their empirical \(95\%\) confidence bands, that is to say from the \(2.5th\) to the \(97.5th\) percentile for each observation at time \(t\) (blue lines):
R> ## Ito
R> plot(mod1,ylab=expression(X^mod1))
R> lines(time(mod1),apply(mod1$X,1,mean),col=2,lwd=2)
R> lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
R> lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
R> legend("topleft",c("mean path",paste("bound of", 95,"% confidence")),inset = .01,col=c(2,4),lwd=2,cex=0.8)
R> ## Stratonovich
R> plot(mod2,ylab=expression(X^mod2))
R> lines(time(mod2),apply(mod2$X,1,mean),col=2,lwd=2)
R> lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
R> lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
R> legend("topleft",c("mean path",paste("bound of",95,"% confidence")),col=c(2,4),inset =.01,lwd=2,cex=0.8)
snssde2d()
The following \(2\)-dimensional SDE’s with a vector of drift and matrix of diffusion coefficients:
Ito form: \[\begin{equation}\label{eq:09} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) dW_{2,t} \end{cases} \end{equation}\]
Stratonovich form: \[\begin{equation}\label{eq:10}
\begin{cases}
dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) \circ dW_{1,t}\\
dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) \circ dW_{2,t}
\end{cases}
\end{equation}\] where \((W_{1,t},
W_{2,t})\) are a two independent standard Wiener process if
corr = NULL
. To simulate \(2d\) models using snssde2d()
function we need to specify:
drift
(2d) and diffusion
(2d)
coefficients as R expressions that depend on the state variable
x
, y
and time variable t
.corr
the correlation structure of two standard Wiener
process \((W_{1,t},W_{2,t})\); must be
a real symmetric positive-definite square matrix of dimension \(2\) (default: corr=NULL
).N
(default:
N=1000
).M
(default: M=1
).t0
, x0
and end time
T
(default: t0=0
, x0=c(0,0)
and
T=1
).Dt
(default:
Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (default
type="ito"
).method
(default
method="euler"
).The Ornstein-Uhlenbeck (OU) process has a long history in physics. Introduced in essence by Langevin in his famous 1908 paper on Brownian motion, the process received a more thorough mathematical examination several decades later by Uhlenbeck and Ornstein (1930). The OU process is understood here to be the univariate continuous Markov process \(X_t\). In mathematical terms, the equation is written as an Ito equation: \[\begin{equation}\label{eq016} dX_t = -\frac{1}{\mu} X_t dt + \sqrt{\sigma} dW_t,\quad X_{0}=x_{0} \end{equation}\] In these equations, \(\mu\) and \(\sigma\) are positive constants called, respectively, the relaxation time and the diffusion constant. The time integral of the OU process \(X_t\) (or indeed of any process \(X_t\)) is defined to be the process \(Y_t\) that satisfies: \[\begin{equation}\label{eq017} Y_{t} = Y_{0}+\int X_{t} dt \Leftrightarrow dY_t = X_{t} dt ,\quad Y_{0}=y_{0} \end{equation}\] \(Y_t\) is not itself a Markov process; however, \(X_t\) and \(Y_t\) together comprise a bivariate continuous Markov process. We wish to find the solutions \(X_t\) and \(Y_t\) to the coupled time-evolution equations: \[\begin{equation}\label{eq018} \begin{cases} dX_t = -\frac{1}{\mu} X_t dt + \sqrt{\sigma} dW_t\\ dY_t = X_{t} dt \end{cases} \end{equation}\]
We simulate a flow of \(1000\) trajectories of \((X_{t},Y_{t})\), with integration step size \(\Delta t = 0.01\), and using second Milstein method.
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> x0=5;y0=0
R> mu=3;sigma=0.5
R> fx <- expression(-(x/mu),x)
R> gx <- expression(sqrt(sigma),0)
R> mod2d <- snssde2d(drift=fx,diffusion=gx,Dt=0.01,M=1000,x0=c(x0,y0),method="smilstein")
R> mod2d
Itô Sde 2D:
| dX(t) = -(X(t)/mu) * dt + sqrt(sigma) * dW1(t)
| dY(t) = X(t) * dt + 0 * dW2(t)
Method:
| Second-order Milstein scheme
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0) = (5,0).
| Time of process | t in [0,10].
| Discretization | Dt = 0.01.
The summary of the results of mod2d
at time \(t=10\) of class snssde2d()
is
given by:
For plotting in time (or in plane) using the command
plot
(plot2d
), the results of the simulation
are shown in Figure 3.
R> ## in time
R> plot(mod2d)
R> ## in plane (O,X,Y)
R> plot2d(mod2d,type="n")
R> points2d(mod2d,col=rgb(0,100,0,50,maxColorValue=255), pch=16)
Hence we can just make use of the rsde2d()
function to
build our random number for \((X_{t},Y_{t})\) at time \(t = 10\).
x y
1 0.32480 12.2224
2 0.91370 9.3092
3 0.49834 14.4406
The density of \(X_t\) and \(Y_t\) at time \(t=10\) are reported using
dsde2d()
function, see e.g. Figure 4: the marginal density
of \(X_t\) and \(Y_t\) at time \(t=10\). For plotted in (x, y)-space with
dim = 2
. A contour
and image
plot
of density obtained from a realization of system \((X_{t},Y_{t})\) at time t=10
,
see:
R> ## the marginal density
R> denM <- dsde2d(mod2d,pdf="M",at =10)
R> plot(denM, main="Marginal Density")
R> ## the Joint density
R> denJ <- dsde2d(mod2d, pdf="J", n=100,at =10)
R> plot(denJ,display="contour",main="Bivariate Transition Density at time t=10")
A \(3\)D plot of the transition density at \(t=10\) obtained with:
We approximate the bivariate transition density over the set transition horizons \(t\in [1,10]\) by \(\Delta t = 0.005\) using the code:
The Van der Pol (1922) equation is an ordinary differential equation that can be derived from the Rayleigh differential equation by differentiating and setting \(\dot{x}=y\), see Naess and Hegstad (1994); Leung (1995) and for more complex dynamics in Van-der-Pol equation see Jing et al. (2006). It is an equation describing self-sustaining oscillations in which energy is fed into small oscillations and removed from large oscillations. This equation arises in the study of circuits containing vacuum tubes and is given by: \[\begin{equation}\label{eq:12} \ddot{X}-\mu (1-X^{2}) \dot{X} + X = 0 \end{equation}\] where \(x\) is the position coordinate (which is a function of the time \(t\)), and \(\mu\) is a scalar parameter indicating the nonlinearity and the strength of the damping, to simulate the deterministic equation see Grayling (2014) for more details. Consider stochastic perturbations of the Van-der-Pol equation, and random excitation force of such systems by White noise \(\xi_{t}\), with delta-type correlation function \(\text{E}(\xi_{t}\xi_{t+h})=2\sigma \delta (h)\) \[\begin{equation}\label{eq:13} \ddot{X}-\mu (1-X^{2}) \dot{X} + X = \xi_{t}, \end{equation}\] where \(\mu > 0\) . It’s solution cannot be obtained in terms of elementary functions, even in the phase plane. The White noise \(\xi_{t}\) is formally derivative of the Wiener process \(W_{t}\). The representation of a system of two first order equations follows the same idea as in the deterministic case by letting \(\dot{x}=y\), from physical equation we get the above system: \[\begin{equation}\label{eq:14} \begin{cases} \dot{X} = Y \\ \dot{Y} = \mu \left(1-X^{2}\right) Y - X + \xi_{t} \end{cases} \end{equation}\] The system can mathematically explain by a Stratonovitch equations: \[\begin{equation}\label{eq:15} \begin{cases} dX_{t} = Y_{t} dt \\ dY_{t} = \left(\mu (1-X^{2}_{t}) Y_{t} - X_{t}\right) dt + 2 \sigma \circ dW_{2,t} \end{cases} \end{equation}\]
Implemente in R as follows, with integration step size \(\Delta t = 0.01\) and using stochastic Runge-Kutta methods 1-stage.
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> mu = 4; sigma=0.1
R> fx <- expression( y , (mu*( 1-x^2 )* y - x))
R> gx <- expression( 0 ,2*sigma)
R> mod2d <- snssde2d(drift=fx,diffusion=gx,N=10000,Dt=0.01,type="str",method="rk1")
For plotting (back in time) using the command plot
, and
plot2d
in plane the results of the simulation are shown in
Figure 6.
Consider a system of stochastic differential equations:
\[\begin{equation}\label{eq:115} \begin{cases} dX_{t} = \mu X_{t} dt + X_{t}\sqrt{Y_{t}} dB_{1,t}\\ dY_{t} = \nu (\theta-Y_{t}) dt + \sigma \sqrt{Y_{t}} dB_{2,t} \end{cases} \end{equation}\]
Conditions to ensure positiveness of the volatility process are that \(2\nu \theta > \sigma^2\), and the two Brownian motions \((B_{1,t},B_{2,t})\) are correlated. \(\Sigma\) to describe the correlation structure, for example: \[ \Sigma= \begin{pmatrix} 1 & 0.3 \\ 0.3 & 2 \end{pmatrix} \]
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> mu = 1.2; sigma=0.1;nu=2;theta=0.5
R> fx <- expression( mu*x ,nu*(theta-y))
R> gx <- expression( x*sqrt(y) ,sigma*sqrt(y))
R> Sigma <- matrix(c(1,0.3,0.3,2),nrow=2,ncol=2) # correlation matrix
R> HM <- snssde2d(drift=fx,diffusion=gx,Dt=0.001,x0=c(100,1),corr=Sigma,M=1000)
R> HM
Itô Sde 2D:
| dX(t) = mu * X(t) * dt + X(t) * sqrt(Y(t)) * dB1(t)
| dY(t) = nu * (theta - Y(t)) * dt + sigma * sqrt(Y(t)) * dB2(t)
| Correlation structure:
1.0 0.3
0.3 2.0
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0) = (100,1).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Hence we can just make use of the rsde2d()
function to
build our random number for \((X_{t},Y_{t})\) at time \(t = 1\).
x y
1 181.42 0.56526
2 137.85 0.52612
3 243.57 0.62700
The density of \(X_t\) and \(Y_t\) at time \(t=1\) are reported using
dsde2d()
function. See:
snssde3d()
The following \(3\)-dimensional SDE’s with a vector of drift and matrix of diffusion coefficients:
Ito form: \[\begin{equation}\label{eq17} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) dW_{2,t}\\ dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) dW_{3,t} \end{cases} \end{equation}\]
Stratonovich form: \[\begin{equation}\label{eq18}
\begin{cases}
dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) \circ
dW_{1,t}\\
dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) \circ
dW_{2,t}\\
dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) \circ
dW_{3,t}
\end{cases}
\end{equation}\] \((W_{1,t},W_{2,t},W_{3,t})\) are three
independents standard Wiener process if corr = NULL
. To
simulate this system using snssde3d()
function we need to
specify:
drift
(3d) and diffusion
(3d)
coefficients as R expressions that depend on the state variables
x
, y
, z
and time variable
t
.corr
the correlation structure of three standard Wiener
process \((W_{1,t},W_{2,t},W_{2,t})\);
must be a real symmetric positive-definite square matrix of dimension
\(3\) (default:
corr=NULL
).N
(default:
N=1000
).M
(default: M=1
).t0
, x0
and end time
T
(default: t0=0
, x0=c(0,0,0)
and
T=1
).Dt
(default:
Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (default
type="ito"
).method
(default
method="euler"
).Assume that we want to describe the following SDE’s (3D) in Ito form: \[\begin{equation}\label{eq0166} \begin{cases} dX_t = 4 (-1-X_{t}) Y_{t} dt + 0.2 dW_{1,t}\\ dY_t = 4 (1-Y_{t}) X_{t} dt + 0.2 dW_{2,t}\\ dZ_t = 4 (1-Z_{t}) Y_{t} dt + 0.2 dW_{3,t} \end{cases} \end{equation}\] with \((W_{1,t},W_{2,t},W_{3,t})\) are three indpendant standard Wiener process.
We simulate a flow of \(1000\) trajectories, with integration step size \(\Delta t = 0.001\).
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> fx <- expression(4*(-1-x)*y , 4*(1-y)*x , 4*(1-z)*y)
R> gx <- rep(expression(0.2),3)
R> mod3d <- snssde3d(x0=c(x=2,y=-2,z=-2),drift=fx,diffusion=gx,M=1000)
R> mod3d
Itô Sde 3D:
| dX(t) = 4 * (-1 - X(t)) * Y(t) * dt + 0.2 * dW1(t)
| dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)
| dZ(t) = 4 * (1 - Z(t)) * Y(t) * dt + 0.2 * dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0,z0) = (2,-2,-2).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
The following statistical measures (S3 method
) for class
snssde3d()
can be approximated for the \((X_{t},Y_{t},Z_{t})\) process at any time
\(t\), for example
at=1
:
R> s = 1
R> mean(mod3d, at = s)
R> moment(mod3d, at = s , center = TRUE , order = 2) ## variance
R> Median(mod3d, at = s)
R> Mode(mod3d, at = s)
R> quantile(mod3d , at = s)
R> kurtosis(mod3d , at = s)
R> skewness(mod3d , at = s)
R> cv(mod3d , at = s )
R> min(mod3d , at = s)
R> max(mod3d , at = s)
R> moment(mod3d, at = s , center= TRUE , order = 4)
R> moment(mod3d, at = s , center= FALSE , order = 4)
The summary of the results of mod3d
at time \(t=1\) of class snssde3d()
is
given by:
For plotting (back in time) using the command plot
, and
plot3D
in space the results of the simulation are shown in
Figure 7.
Hence we can just make use of the rsde3d()
function to
build our random number for \((X_{t},Y_{t},Z_{t})\) at time \(t = 1\).
x y z
1 -0.73929 0.65851 0.64650
2 -0.63795 0.41731 0.79531
3 -0.80249 1.16501 0.83721
For each SDE type and for each numerical scheme, the marginal density
of \(X_t\), \(Y_t\) and \(Z_t\) at time \(t=1\) are reported using
dsde3d()
function, see e.g. Figure 8.
For an approximate joint transition density for \((X_t,Y_t,Z_t)\) (for more details, see package sm or ks.)
If we assume that \(U_w( x , y , z , t
)\), \(V_w( x , y , z , t )\)
and \(S_w( x , y , z , t )\) are
neglected and the dispersion coefficient \(D(
x , y , z )\) is constant. A system becomes (see
Boukhetala,1996): \[\begin{eqnarray}\label{eq19}
% \nonumber to remove numbering (before each equation)
\begin{cases}
dX_t = \left(\frac{-K X_{t}}{\sqrt{X^{2}_{t} + Y^{2}_{t} +
Z^{2}_{t}}}\right) dt + \sigma dW_{1,t} \nonumber\\
dY_t = \left(\frac{-K Y_{t}}{\sqrt{X^{2}_{t} + Y^{2}_{t} +
Z^{2}_{t}}}\right) dt + \sigma dW_{2,t} \\
dZ_t = \left(\frac{-K Z_{t}}{\sqrt{X^{2}_{t} + Y^{2}_{t} +
Z^{2}_{t}}}\right) dt + \sigma dW_{3,t} \nonumber
\end{cases}
\end{eqnarray}\] with initial conditions \((X_{0},Y_{0},Z_{0})=(1,1,1)\), by
specifying the drift and diffusion coefficients of three processes \(X_{t}\), \(Y_{t}\) and \(Z_{t}\) as R expressions which depends on
the three state variables (x,y,z)
and time variable
t
, with integration step size Dt=0.0001
.
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> K = 4; s = 1; sigma = 0.2
R> fx <- expression( (-K*x/sqrt(x^2+y^2+z^2)) , (-K*y/sqrt(x^2+y^2+z^2)) , (-K*z/sqrt(x^2+y^2+z^2)) )
R> gx <- rep(expression(sigma),3)
R> mod3d <- snssde3d(drift=fx,diffusion=gx,N=10000,x0=c(x=1,y=1,z=1))
The results of simulation (3D) are shown in Figure 9:
Next is an example of one-dimensional SDE driven by three correlated
Wiener process (\(B_{1,t}\),\(B_{2,t}\),\(B_{3,t}\)), as follows: \[\begin{equation}\label{eq20}
dX_{t} = B_{1,t} dt + B_{2,t} dB_{3,t}
\end{equation}\] with: \[
\Sigma=
\begin{pmatrix}
1 & 0.2 &0.5\\
0.2 & 1 & -0.7 \\
0.5 &-0.7&1
\end{pmatrix}
\] To simulate the solution of the process \(X_t\), we make a transformation to a system
of three equations as follows: \[\begin{eqnarray}\label{eq21}
\begin{cases}
% \nonumber to remove numbering (before each equation)
dX_t = Y_{t} dt + Z_{t} dB_{3,t} \nonumber\\
dY_t = dB_{1,t} \\
dZ_t = dB_{2,t} \nonumber
\end{cases}
\end{eqnarray}\] run by calling the function
snssde3d()
to produce a simulation of the solution, with
\(\mu = 1\) and \(\sigma = 1\).
R> set.seed(1234, kind = "L'Ecuyer-CMRG")
R> fx <- expression(y,0,0)
R> gx <- expression(z,1,1)
R> Sigma <-matrix(c(1,0.2,0.5,0.2,1,-0.7,0.5,-0.7,1),nrow=3,ncol=3)
R> modtra <- snssde3d(drift=fx,diffusion=gx,M=1000,corr=Sigma)
R> modtra
Itô Sde 3D:
| dX(t) = Y(t) * dt + Z(t) * dB1(t)
| dY(t) = 0 * dt + 1 * dB2(t)
| dZ(t) = 0 * dt + 1 * dB3(t)
| Correlation structure:
1.0 0.2 0.5
0.2 1.0 -0.7
0.5 -0.7 1.0
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0,z0) = (0,0,0).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
The histogram and kernel density of \(X_t\) at time \(t=1\) are reported using
rsde3d()
function, and we calculate emprical
variance-covariance matrix \(C(s,t)=\text{Cov}(X_{s},X_{t})\), see
e.g. Figure 10.
R> X <- rsde3d(modtra,at=1)$x
R> MASS::truehist(X,xlab = expression(X[t==1]));box()
R> lines(density(X),col="red",lwd=2)
R> legend("topleft",c("Distribution histogram","Kernel Density"),inset =.01,pch=c(15,NA),lty=c(NA,1),col=c("cyan","red"), lwd=2,cex=0.8)
R> ## Cov-Matrix
R> color.palette=colorRampPalette(c('white','green','blue','red'))
R> filled.contour(time(modtra), time(modtra), cov(t(modtra$X)), color.palette=color.palette,plot.title = title(main = expression(paste("Covariance empirique:",cov(X[s],X[t]))),xlab = "time", ylab = "time"),key.title = title(main = ""))
snssdekd()
&
dsdekd()
& rsdekd()
- Monte-Carlo
Simulation and Analysis of Stochastic Differential Equations.bridgesdekd()
&
dsdekd()
& rsdekd()
- Constructs and
Analysis of Bridges Stochastic Differential Equations.fptsdekd()
&
dfptsdekd()
- Monte-Carlo Simulation and Kernel Density
Estimation of First passage time.MCM.sde()
&
MEM.sde()
- Parallel Monte-Carlo and Moment Equations for
SDEs.TEX.sde()
- Converting
Sim.DiffProc Objects to LaTeX.fitsde()
- Parametric Estimation
of 1-D Stochastic Differential Equation.Boukhetala K (1996). Modelling and Simulation of a Dispersion Pollutant with Attractive Centre, volume 3, pp. 245-252. Computer Methods and Water Resources, Computational Mechanics Publications, Boston, USA.
Guidoum AC, Boukhetala K (2020). “Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc”. Journal of Statistical Software, 96(2), 1–82. https://doi.org/10.18637/jss.v096.i02
Department of Mathematics and Computer Science, Faculty of Sciences and Technology, University of Tamanghasset, Algeria, E-mail (acguidoum@univ-tam.dz)↩︎
Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail (kboukhetala@usthb.dz)↩︎
The equivalently of \(X_{t}^{\text{mod1}}\) the following Stratonovich SDE: \(dX_{t} = \theta X_{t} \circ dW_{t}\).↩︎